test-A / model.py
avreymi's picture
add to reqirements
98e48f2
raw
history blame
1.52 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import warnings
torch_dtype = torch.bfloat16
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = "mosaicml/mpt-7b"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch_dtype,
trust_remote_code=True,
use_auth_token=None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_auth_token=None,
)
model.eval()
model.to(device=device, dtype=torch_dtype)
if tokenizer.pad_token_id is None:
warnings.warn(
"pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id."
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
gkw = {
"temperature": 0.5,
"top_p": 0.92,
"top_k": 0,
"max_new_tokens": 512,
"use_cache": True,
"do_sample": True,
"eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.pad_token_id,
"repetition_penalty": 1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
}
def mpt_7b(s):
input_ids = tokenizer(s, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
with torch.no_grad():
output_ids = model.generate(input_ids, **gkw)
# Slice the output_ids tensor to get only new tokens
new_tokens = output_ids[0, len(input_ids[0]) :]
output_text = tokenizer.decode(new_tokens, skip_special_tokens=True)
return output_text