Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import threading | |
import gradio as gr | |
model_name = "programordie2/trumpgpt" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def stream_generate(prompt): | |
if not prompt: | |
return | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True) | |
generation_kwargs = dict(input_ids=input_ids, max_new_tokens=50, streamer=streamer) | |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
generated_text = prompt | |
for text in streamer: | |
generated_text += text | |
yield generated_text | |
# Preset prompts | |
example_prompts = [ | |
"The Fake News Media", | |
"Sleepy Joe Biden", | |
"MAKE AMERICA", | |
] | |
# Update input when a prompt is selected | |
def set_prompt(prompt): | |
return gr.update(elem_id="prompt-box", value=prompt) | |
# Interface with custom layout | |
with gr.Blocks(css=""" | |
body { background-color: #f9f9f9; font-family: 'Segoe UI', sans-serif; } | |
.gradio-container { max-width: 700px; margin: auto; padding: 2em; } | |
textarea { font-size: 1rem !important; } | |
#output-box { white-space: pre-wrap; background: #222; border-radius: 12px; padding: 1em; box-shadow: 0 2px 10px rgba(0,0,0,0.1); } | |
""") as demo: | |
gr.Markdown("## ✨ TrumpGPT Playground") | |
gr.Markdown("TrumpGPT is a LLM based on GPT-2, trained on Donald Trump's tweets.") | |
gr.Markdown("Please note this is a next word predictor, not a chatbot.") | |
with gr.Column(): | |
prompt_box = gr.Textbox(label="Prompt", lines=1, placeholder="Type the start of a sentence", elem_id="prompt-box") | |
gr.Markdown("No inspiration? Try one of these:") | |
for prompt in example_prompts: | |
btn = gr.Button(prompt, elem_id=f"prompt-{prompt}") | |
btn.click(set_prompt, btn, prompt_box, show_progress="hidden") | |
gr.Markdown("---") | |
generate_btn = gr.Button("Generate", variant="primary", elem_id="generate-btn") | |
output_box = gr.Textbox(label="Generated Text", lines=8, interactive=False, elem_id="output-box") | |
generate_btn.click(stream_generate, prompt_box, output_box) | |
demo.launch() |