ariG23498 HF Staff commited on
Commit
aa5a45a
·
1 Parent(s): d548683

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md CHANGED
@@ -10,3 +10,104 @@ pinned: false
10
  | DINO | Dog |
11
  | :--: | :--: |
12
  | ![](https://i.imgur.com/kAShjbs.gif) | ![](https://i.imgur.com/xrMkCbg.gif) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  | DINO | Dog |
11
  | :--: | :--: |
12
  | ![](https://i.imgur.com/kAShjbs.gif) | ![](https://i.imgur.com/xrMkCbg.gif) |
13
+
14
+
15
+ [![TensorFlow 2.8](https://img.shields.io/badge/TensorFlow-2.8-FF6F00?logo=tensorflow)](https://github.com/tensorflow/tensorflow/releases/tag/v2.8.0)
16
+
17
+ _By [Aritra Roy Gosthipaty](https://github.com/ariG23498) and [Sayak Paul](https://github.com/sayakpaul) (equal contribution)_
18
+
19
+ We probe into the representations learned by different families of Vision Transformers (supervised pre-training with ImageNet-21k, ImageNet-1k, distillation, self-supervised pre-training):
20
+
21
+ * Original ViT [1]
22
+ * DeiT [2]
23
+ * DINO [3]
24
+
25
+ We hope these tools will prove to be useful for the community. Please follow along with [this post on keras.io](https://keras.io/examples/vision/probing_vits/) for a better navigation through the repository.
26
+
27
+
28
+ ## Self-attention visualization
29
+
30
+ | Original Image | Attention Maps | Attention Maps Overlayed |
31
+ | :--: | :--: | :--: |
32
+ | ![original image](./assets/bird.png) | ![attention maps](./assets/dino_attention_heads_inferno.png) | ![attention maps overlay](./assets/dino_attention_heads.png) |
33
+
34
+ https://user-images.githubusercontent.com/36856589/162609884-8e51156e-d461-421d-9f8a-4d4e48967bd6.mp4
35
+
36
+ <small><a href=https://www.pexels.com/video/a-computer-generated-walking-dinosaur-4096297/>Original Video Source</a></small>
37
+
38
+ https://user-images.githubusercontent.com/36856589/162609907-4e432dc4-a731-40f4-9a20-94e0c8f648bc.mp4
39
+
40
+ <small><a href=https://www.pexels.com/video/a-dog-running-in-a-grass-field-4166343/>Original Video Source</a></small>
41
+
42
+ ## Supervised salient representations
43
+
44
+ In the [DINO](https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training/) blog post, the authors show a video with the following caption:
45
+
46
+ > The original video is shown on the left. In the middle is a segmentation example generated by a supervised model, and on the right is one generated by DINO.
47
+
48
+ A screenshot of the video is as follows:
49
+
50
+ <img width="764" alt="image" src="https://user-images.githubusercontent.com/36856589/162615199-b5133e51-460e-4864-a83e-5b8007339ff7.png"><br>
51
+
52
+
53
+ We obtain the attention maps generated with the supervised pre-trained model and find that they are not that salient w.r.t the DINO model. We observe a similar behaviour in our experiments as well. The figure below shows the attention heatmaps extracted with
54
+ a ViT-B16 model pre-trained (supervised) using ImageNet-1k:
55
+
56
+ | Dinosaur | Dog |
57
+ | :--: | :--: |
58
+ | ![](./assets/supervised-dino.gif) | ![](./assets/supervised-dog.gif) |
59
+
60
+ We used this [Colab Notebook](https://github.com/sayakpaul/probing-vits/blob/main/notebooks/vitb16-attention-maps-video.ipynb) to conduct this experiment.
61
+
62
+ ## Hugging Face Spaces
63
+
64
+ You can now probe into the ViTs with your own input images.
65
+
66
+ | Attention Heat Maps | Attention Rollout |
67
+ | :--: | :--: |
68
+ | [![Generic badge](https://img.shields.io/badge/🤗%20Spaces-Attention%20Heat%20Maps-black.svg)](https://huggingface.co/spaces/probing-vits/attention-heat-maps) | [![Generic badge](https://img.shields.io/badge/🤗%20Spaces-Attention%20Rollout-black.svg)](https://huggingface.co/spaces/probing-vits/attention-rollout) |
69
+
70
+ ## Visualizing mean attention distances
71
+
72
+ <div align="center">
73
+ <img src="./assets/vit_base_i21k_patch16_224.png" width=450/>
74
+ </div>
75
+
76
+ ## Methods
77
+
78
+ **We don't propose any novel methods of probing the representations of neural networks. Instead we take the existing works and implement them in TensorFlow.**
79
+
80
+ * Mean attention distance [1, 4]
81
+ * Attention Rollout [5]
82
+ * Visualization of the learned projection filters [1]
83
+ * Visualization of the learned positioanl embeddings
84
+ * Attention maps from individual attention heads [3]
85
+ * Generation of attention heatmaps from videos [3]
86
+
87
+ Another interesting repository that also visualizes ViTs in PyTorch: https://github.com/jacobgil/vit-explain.
88
+
89
+
90
+ ## Notes
91
+
92
+ We first implemented the above-mentioned architectures in TensorFlow and then we populated the pre-trained parameters into them using the official codebases. In order to validate this, we evaluated the implementations on the ImageNet-1k validation set and ensured that the reported top-1 accuracies matched.
93
+
94
+ We value the spirit of open-source. So, if you spot any bugs in the code or see a scope for improvement don't hesitate to open up an issue or contribute a PR. We'd very much appreciate it.
95
+
96
+
97
+ ## References
98
+
99
+ [1] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: [https://arxiv.org/abs/2010.11929](https://arxiv.org/abs/2010.11929)
100
+
101
+ [2] DeiT: https://arxiv.org/abs/2012.12877
102
+
103
+ [3] DINO: https://arxiv.org/abs/2104.14294
104
+
105
+ [4] Do Vision Transformers See Like Convolutional Neural Networks?: [https://arxiv.org/abs/2108.08810](https://arxiv.org/abs/2108.08810)
106
+
107
+ [5] [Quantifying Attention Flow in Transformers](https://arxiv.org/abs/2005.00928)
108
+
109
+ ## Acknowledgements
110
+
111
+ - [PyImageSearch](https://pyimagesearch.com)
112
+ - [Jarvislabs.ai](https://jarvislabs.ai/)
113
+ - [GDE Program](https://developers.google.com/programs/experts/)