Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,431 +1,80 @@
|
|
1 |
-
"""Streamlit frontend for the News Summarization application."""
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
-
import
|
9 |
-
import
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
with sentiment_col2:
|
82 |
-
# Display fine-grained sentiment if available
|
83 |
-
if "fine_grained_sentiment" in article and article["fine_grained_sentiment"]:
|
84 |
-
fine_grained = article["fine_grained_sentiment"]
|
85 |
-
if "category" in fine_grained:
|
86 |
-
st.write("**Detailed Sentiment:**", fine_grained["category"])
|
87 |
-
if "confidence" in fine_grained:
|
88 |
-
st.write("**Confidence:**", f"{fine_grained['confidence']*100:.1f}%")
|
89 |
-
|
90 |
-
# Display sentiment indices if available
|
91 |
-
if "sentiment_indices" in article and article["sentiment_indices"]:
|
92 |
-
st.markdown("**Sentiment Indices:**")
|
93 |
-
indices = article["sentiment_indices"]
|
94 |
-
|
95 |
-
# Create columns for displaying indices
|
96 |
-
idx_cols = st.columns(3)
|
97 |
-
|
98 |
-
# Display positivity and negativity in first column
|
99 |
-
with idx_cols[0]:
|
100 |
-
if "positivity_index" in indices:
|
101 |
-
st.markdown(f"**Positivity:** {indices['positivity_index']:.2f}")
|
102 |
-
if "negativity_index" in indices:
|
103 |
-
st.markdown(f"**Negativity:** {indices['negativity_index']:.2f}")
|
104 |
-
|
105 |
-
# Display emotional intensity and controversy in second column
|
106 |
-
with idx_cols[1]:
|
107 |
-
if "emotional_intensity" in indices:
|
108 |
-
st.markdown(f"**Emotional Intensity:** {indices['emotional_intensity']:.2f}")
|
109 |
-
if "controversy_score" in indices:
|
110 |
-
st.markdown(f"**Controversy:** {indices['controversy_score']:.2f}")
|
111 |
-
|
112 |
-
# Display confidence and ESG in third column
|
113 |
-
with idx_cols[2]:
|
114 |
-
if "confidence_score" in indices:
|
115 |
-
st.markdown(f"**Confidence:** {indices['confidence_score']:.2f}")
|
116 |
-
if "esg_relevance" in indices:
|
117 |
-
st.markdown(f"**ESG Relevance:** {indices['esg_relevance']:.2f}")
|
118 |
-
|
119 |
-
# Display entities if available
|
120 |
-
if "entities" in article and article["entities"]:
|
121 |
-
st.markdown("**Named Entities:**")
|
122 |
-
entities = article["entities"]
|
123 |
-
|
124 |
-
# Organizations
|
125 |
-
if "ORG" in entities and entities["ORG"]:
|
126 |
-
st.write("**Organizations:**", ", ".join(entities["ORG"]))
|
127 |
-
|
128 |
-
# People
|
129 |
-
if "PERSON" in entities and entities["PERSON"]:
|
130 |
-
st.write("**People:**", ", ".join(entities["PERSON"]))
|
131 |
-
|
132 |
-
# Locations
|
133 |
-
if "GPE" in entities and entities["GPE"]:
|
134 |
-
st.write("**Locations:**", ", ".join(entities["GPE"]))
|
135 |
-
|
136 |
-
# Money
|
137 |
-
if "MONEY" in entities and entities["MONEY"]:
|
138 |
-
st.write("**Financial Values:**", ", ".join(entities["MONEY"]))
|
139 |
-
|
140 |
-
# Display sentiment targets if available
|
141 |
-
if "sentiment_targets" in article and article["sentiment_targets"]:
|
142 |
-
st.markdown("**Sentiment Targets:**")
|
143 |
-
targets = article["sentiment_targets"]
|
144 |
-
for target in targets:
|
145 |
-
st.markdown(f"**{target['entity']}** ({target['type']}): {target['sentiment']} ({target['confidence']*100:.1f}%)")
|
146 |
-
st.markdown(f"> {target['context']}")
|
147 |
-
st.markdown("---")
|
148 |
-
|
149 |
-
if "url" in article:
|
150 |
-
st.write("**[Read More](%s)**" % article["url"])
|
151 |
-
|
152 |
-
# Display Comparative Analysis
|
153 |
-
st.header("📊 Comparative Analysis")
|
154 |
-
analysis = result.get("comparative_sentiment_score", {})
|
155 |
-
|
156 |
-
# Sentiment Distribution
|
157 |
-
if "sentiment_distribution" in analysis:
|
158 |
-
st.subheader("Sentiment Distribution")
|
159 |
-
|
160 |
-
# Debug: Print sentiment distribution data
|
161 |
-
print("Sentiment Distribution Data:")
|
162 |
-
print(json.dumps(analysis["sentiment_distribution"], indent=2))
|
163 |
-
|
164 |
-
sentiment_dist = analysis["sentiment_distribution"]
|
165 |
-
|
166 |
-
# Create a very simple visualization that will definitely work
|
167 |
-
try:
|
168 |
-
# Extract basic sentiment data
|
169 |
-
if isinstance(sentiment_dist, dict):
|
170 |
-
if "basic" in sentiment_dist and isinstance(sentiment_dist["basic"], dict):
|
171 |
-
basic_dist = sentiment_dist["basic"]
|
172 |
-
elif any(k in sentiment_dist for k in ['positive', 'negative', 'neutral']):
|
173 |
-
basic_dist = {k: v for k, v in sentiment_dist.items()
|
174 |
-
if k in ['positive', 'negative', 'neutral']}
|
175 |
-
else:
|
176 |
-
basic_dist = {'positive': 0, 'negative': 0, 'neutral': 1}
|
177 |
-
else:
|
178 |
-
basic_dist = {'positive': 0, 'negative': 0, 'neutral': 1}
|
179 |
-
|
180 |
-
# Calculate percentages
|
181 |
-
total_articles = sum(basic_dist.values())
|
182 |
-
if total_articles > 0:
|
183 |
-
percentages = {
|
184 |
-
k: (v / total_articles) * 100
|
185 |
-
for k, v in basic_dist.items()
|
186 |
-
}
|
187 |
-
else:
|
188 |
-
percentages = {k: 0 for k in basic_dist}
|
189 |
-
|
190 |
-
# Display as simple text and metrics
|
191 |
-
st.write("**Sentiment Distribution:**")
|
192 |
-
|
193 |
-
col1, col2, col3 = st.columns(3)
|
194 |
-
with col1:
|
195 |
-
st.metric(
|
196 |
-
"Positive",
|
197 |
-
basic_dist.get('positive', 0),
|
198 |
-
f"{percentages.get('positive', 0):.1f}%"
|
199 |
-
)
|
200 |
-
with col2:
|
201 |
-
st.metric(
|
202 |
-
"Negative",
|
203 |
-
basic_dist.get('negative', 0),
|
204 |
-
f"{percentages.get('negative', 0):.1f}%"
|
205 |
-
)
|
206 |
-
with col3:
|
207 |
-
st.metric(
|
208 |
-
"Neutral",
|
209 |
-
basic_dist.get('neutral', 0),
|
210 |
-
f"{percentages.get('neutral', 0):.1f}%"
|
211 |
-
)
|
212 |
-
|
213 |
-
# Create a simple bar chart using Altair
|
214 |
-
|
215 |
-
# Create a simple DataFrame with consistent capitalization and percentages
|
216 |
-
chart_data = pd.DataFrame({
|
217 |
-
'Sentiment': ['Positive', 'Negative', 'Neutral'],
|
218 |
-
'Count': [
|
219 |
-
basic_dist.get('positive', 0), # Map lowercase keys to capitalized display
|
220 |
-
basic_dist.get('negative', 0),
|
221 |
-
basic_dist.get('neutral', 0)
|
222 |
-
],
|
223 |
-
'Percentage': [
|
224 |
-
f"{percentages.get('positive', 0):.1f}%",
|
225 |
-
f"{percentages.get('negative', 0):.1f}%",
|
226 |
-
f"{percentages.get('neutral', 0):.1f}%"
|
227 |
-
]
|
228 |
-
})
|
229 |
-
|
230 |
-
# Add debug output to see what's in the data
|
231 |
-
print("Chart Data for Sentiment Distribution:")
|
232 |
-
print(chart_data)
|
233 |
-
|
234 |
-
# Create a simple bar chart with percentages
|
235 |
-
chart = alt.Chart(chart_data).mark_bar().encode(
|
236 |
-
y='Sentiment', # Changed from x to y for horizontal bars
|
237 |
-
x='Count', # Changed from y to x for horizontal bars
|
238 |
-
color=alt.Color('Sentiment', scale=alt.Scale(
|
239 |
-
domain=['Positive', 'Negative', 'Neutral'],
|
240 |
-
range=['green', 'red', 'gray']
|
241 |
-
)),
|
242 |
-
tooltip=['Sentiment', 'Count', 'Percentage'] # Add tooltip with percentage
|
243 |
-
).properties(
|
244 |
-
width=600,
|
245 |
-
height=300
|
246 |
-
)
|
247 |
-
|
248 |
-
# Add text labels with percentages
|
249 |
-
text = chart.mark_text(
|
250 |
-
align='left',
|
251 |
-
baseline='middle',
|
252 |
-
dx=3 # Nudge text to the right so it doesn't overlap with the bar
|
253 |
-
).encode(
|
254 |
-
text='Percentage'
|
255 |
-
)
|
256 |
-
|
257 |
-
# Combine the chart and text
|
258 |
-
chart_with_text = (chart + text)
|
259 |
-
|
260 |
-
st.altair_chart(chart_with_text, use_container_width=True)
|
261 |
-
|
262 |
-
except Exception as e:
|
263 |
-
st.error(f"Error creating visualization: {str(e)}")
|
264 |
-
st.write("Fallback to simple text display:")
|
265 |
-
if isinstance(sentiment_dist, dict):
|
266 |
-
if "basic" in sentiment_dist:
|
267 |
-
st.write(f"Positive: {sentiment_dist['basic'].get('positive', 0)}")
|
268 |
-
st.write(f"Negative: {sentiment_dist['basic'].get('negative', 0)}")
|
269 |
-
st.write(f"Neutral: {sentiment_dist['basic'].get('neutral', 0)}")
|
270 |
-
else:
|
271 |
-
st.write(f"Positive: {sentiment_dist.get('positive', 0)}")
|
272 |
-
st.write(f"Negative: {sentiment_dist.get('negative', 0)}")
|
273 |
-
st.write(f"Neutral: {sentiment_dist.get('neutral', 0)}")
|
274 |
-
else:
|
275 |
-
st.write("No valid sentiment data available")
|
276 |
-
|
277 |
-
# Display sentiment indices if available
|
278 |
-
if "sentiment_indices" in analysis and analysis["sentiment_indices"]:
|
279 |
-
st.subheader("Sentiment Indices")
|
280 |
-
|
281 |
-
# Debug: Print sentiment indices
|
282 |
-
print("Sentiment Indices:")
|
283 |
-
print(json.dumps(analysis["sentiment_indices"], indent=2))
|
284 |
-
|
285 |
-
# Get the indices data
|
286 |
-
indices = analysis["sentiment_indices"]
|
287 |
-
|
288 |
-
# Create a very simple visualization that will definitely work
|
289 |
-
try:
|
290 |
-
if isinstance(indices, dict):
|
291 |
-
# Display as simple metrics in columns
|
292 |
-
cols = st.columns(3)
|
293 |
-
|
294 |
-
# Define display names and descriptions
|
295 |
-
display_names = {
|
296 |
-
"positivity_index": "Positivity",
|
297 |
-
"negativity_index": "Negativity",
|
298 |
-
"emotional_intensity": "Emotional Intensity",
|
299 |
-
"controversy_score": "Controversy",
|
300 |
-
"confidence_score": "Confidence",
|
301 |
-
"esg_relevance": "ESG Relevance"
|
302 |
-
}
|
303 |
-
|
304 |
-
# Display each index as a metric
|
305 |
-
for i, (key, value) in enumerate(indices.items()):
|
306 |
-
if isinstance(value, (int, float)):
|
307 |
-
with cols[i % 3]:
|
308 |
-
display_name = display_names.get(key, key.replace("_", " ").title())
|
309 |
-
st.metric(display_name, f"{value:.2f}")
|
310 |
-
|
311 |
-
# Create a simple bar chart using Altair
|
312 |
-
|
313 |
-
# Create a simple DataFrame
|
314 |
-
chart_data = pd.DataFrame({
|
315 |
-
'Index': [display_names.get(k, k.replace("_", " ").title()) for k in indices.keys()],
|
316 |
-
'Value': [v if isinstance(v, (int, float)) else 0 for v in indices.values()]
|
317 |
-
})
|
318 |
-
|
319 |
-
# Create a simple bar chart
|
320 |
-
chart = alt.Chart(chart_data).mark_bar().encode(
|
321 |
-
x='Value',
|
322 |
-
y='Index',
|
323 |
-
color=alt.Color('Index')
|
324 |
-
).properties(
|
325 |
-
width=600,
|
326 |
-
height=300
|
327 |
-
)
|
328 |
-
|
329 |
-
st.altair_chart(chart, use_container_width=True)
|
330 |
-
|
331 |
-
# Add descriptions
|
332 |
-
with st.expander("Sentiment Indices Explained"):
|
333 |
-
st.markdown("""
|
334 |
-
- **Positivity**: Measures the positive sentiment in the articles (0-1)
|
335 |
-
- **Negativity**: Measures the negative sentiment in the articles (0-1)
|
336 |
-
- **Emotional Intensity**: Measures the overall emotional content (0-1)
|
337 |
-
- **Controversy**: High when both positive and negative sentiments are strong (0-1)
|
338 |
-
- **Confidence**: Confidence in the sentiment analysis (0-1)
|
339 |
-
- **ESG Relevance**: Relevance to Environmental, Social, and Governance topics (0-1)
|
340 |
-
""")
|
341 |
-
else:
|
342 |
-
st.warning("Sentiment indices data is not in the expected format.")
|
343 |
-
st.write("No valid sentiment indices available")
|
344 |
-
except Exception as e:
|
345 |
-
st.error(f"Error creating indices visualization: {str(e)}")
|
346 |
-
st.write("Fallback to simple text display:")
|
347 |
-
if isinstance(indices, dict):
|
348 |
-
for key, value in indices.items():
|
349 |
-
if isinstance(value, (int, float)):
|
350 |
-
st.write(f"{key.replace('_', ' ').title()}: {value:.2f}")
|
351 |
-
else:
|
352 |
-
st.write("No valid sentiment indices data available")
|
353 |
-
|
354 |
-
# Source Distribution
|
355 |
-
if "source_distribution" in analysis:
|
356 |
-
st.subheader("Source Distribution")
|
357 |
-
source_df = pd.DataFrame.from_dict(
|
358 |
-
analysis["source_distribution"],
|
359 |
-
orient='index',
|
360 |
-
columns=['Count']
|
361 |
-
)
|
362 |
-
st.bar_chart(source_df)
|
363 |
-
|
364 |
-
# Common Topics
|
365 |
-
if "common_topics" in analysis:
|
366 |
-
st.subheader("Common Topics")
|
367 |
-
st.write(", ".join(analysis["common_topics"]) if analysis["common_topics"] else "No common topics found")
|
368 |
-
|
369 |
-
# Coverage Differences
|
370 |
-
if "coverage_differences" in analysis:
|
371 |
-
st.subheader("Coverage Analysis")
|
372 |
-
for diff in analysis["coverage_differences"]:
|
373 |
-
st.write("- " + diff)
|
374 |
-
|
375 |
-
# Display Final Sentiment and Audio
|
376 |
-
st.header("🎯 Final Analysis")
|
377 |
-
if "final_sentiment_analysis" in result:
|
378 |
-
st.write(result["final_sentiment_analysis"])
|
379 |
-
|
380 |
-
# Display sentiment indices in the sidebar if available
|
381 |
-
if "sentiment_indices" in analysis and analysis["sentiment_indices"]:
|
382 |
-
indices = analysis["sentiment_indices"]
|
383 |
-
# Verify we have valid data
|
384 |
-
if indices and any(isinstance(v, (int, float)) for v in indices.values()):
|
385 |
-
st.sidebar.markdown("### Sentiment Indices")
|
386 |
-
for idx_name, idx_value in indices.items():
|
387 |
-
if isinstance(idx_value, (int, float)):
|
388 |
-
formatted_name = " ".join(word.capitalize() for word in idx_name.replace("_", " ").split())
|
389 |
-
st.sidebar.metric(formatted_name, f"{idx_value:.2f}")
|
390 |
-
|
391 |
-
# Display ensemble model information if available
|
392 |
-
if "ensemble_info" in result:
|
393 |
-
with st.expander("Ensemble Model Details"):
|
394 |
-
ensemble = result["ensemble_info"]
|
395 |
-
|
396 |
-
# Model agreement
|
397 |
-
if "agreement" in ensemble:
|
398 |
-
st.metric("Model Agreement", f"{ensemble['agreement']*100:.1f}%")
|
399 |
-
|
400 |
-
# Individual model results
|
401 |
-
if "models" in ensemble:
|
402 |
-
st.subheader("Individual Model Results")
|
403 |
-
models_data = []
|
404 |
-
for model_name, model_info in ensemble["models"].items():
|
405 |
-
models_data.append({
|
406 |
-
"Model": model_name,
|
407 |
-
"Sentiment": model_info.get("sentiment", "N/A"),
|
408 |
-
"Confidence": f"{model_info.get('confidence', 0)*100:.1f}%"
|
409 |
-
})
|
410 |
-
|
411 |
-
if models_data:
|
412 |
-
st.table(pd.DataFrame(models_data))
|
413 |
-
|
414 |
-
# Audio Playback Section
|
415 |
-
st.subheader("🔊 Listen to Analysis (Hindi)")
|
416 |
-
if 'audio_content' in result:
|
417 |
-
st.audio(result['audio_content'], format='audio/mp3')
|
418 |
-
else:
|
419 |
-
st.warning("Hindi audio summary not available")
|
420 |
-
|
421 |
-
# Total Articles
|
422 |
-
if "total_articles" in analysis:
|
423 |
-
st.sidebar.info(f"Found {analysis['total_articles']} articles")
|
424 |
-
|
425 |
-
# Add a disclaimer
|
426 |
-
st.sidebar.markdown("---")
|
427 |
-
st.sidebar.markdown("### About")
|
428 |
-
st.sidebar.write("This app analyzes news articles and provides sentiment analysis for any company.")
|
429 |
-
|
430 |
-
if __name__ == "__main__":
|
431 |
-
main()
|
|
|
1 |
+
"""Streamlit frontend for the News Summarization application."""
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import plotly.express as px
|
8 |
+
import altair as alt
|
9 |
+
from utils import analyze_company_data # Import the analysis function directly
|
10 |
+
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="News Summarization App",
|
13 |
+
page_icon="📰",
|
14 |
+
layout="wide"
|
15 |
+
)
|
16 |
+
|
17 |
+
def process_company(company_name):
|
18 |
+
"""Process company data directly."""
|
19 |
+
try:
|
20 |
+
# Call the analysis function directly from utils
|
21 |
+
data = analyze_company_data(company_name)
|
22 |
+
|
23 |
+
# Generate audio if needed
|
24 |
+
if 'summary' in data:
|
25 |
+
from gtts import gTTS
|
26 |
+
tts = gTTS(text=data['summary'], lang='en')
|
27 |
+
audio_path = os.path.join('audio_output', f'{company_name}_summary.mp3')
|
28 |
+
os.makedirs('audio_output', exist_ok=True)
|
29 |
+
tts.save(audio_path)
|
30 |
+
data['audio_path'] = audio_path
|
31 |
+
|
32 |
+
return data
|
33 |
+
except Exception as e:
|
34 |
+
st.error(f"Error processing company: {str(e)}")
|
35 |
+
return {"articles": [], "comparative_sentiment_score": {}, "final_sentiment_analysis": "", "audio_path": None}
|
36 |
+
|
37 |
+
def main():
|
38 |
+
st.title("📰 News Summarization and Analysis")
|
39 |
+
|
40 |
+
# Sidebar
|
41 |
+
st.sidebar.header("Settings")
|
42 |
+
|
43 |
+
# Company name input
|
44 |
+
company_name = st.text_input("Enter Company Name", "")
|
45 |
+
|
46 |
+
if company_name:
|
47 |
+
with st.spinner("Analyzing company news..."):
|
48 |
+
data = process_company(company_name)
|
49 |
+
|
50 |
+
# Display results
|
51 |
+
if data["articles"]:
|
52 |
+
st.subheader("📊 Analysis Results")
|
53 |
+
|
54 |
+
# Display sentiment analysis
|
55 |
+
if data["final_sentiment_analysis"]:
|
56 |
+
st.write("Sentiment Analysis:", data["final_sentiment_analysis"])
|
57 |
+
|
58 |
+
# Display articles
|
59 |
+
st.subheader("📰 Recent Articles")
|
60 |
+
for article in data["articles"]:
|
61 |
+
with st.expander(article["title"]):
|
62 |
+
st.write(article["summary"])
|
63 |
+
st.write("Source:", article["source"])
|
64 |
+
st.write("Sentiment:", article["sentiment"])
|
65 |
+
|
66 |
+
# Display audio if available
|
67 |
+
if data.get("audio_path"):
|
68 |
+
st.audio(data["audio_path"])
|
69 |
+
|
70 |
+
# Display visualizations
|
71 |
+
if data.get("comparative_sentiment_score"):
|
72 |
+
st.subheader("📈 Sentiment Distribution")
|
73 |
+
sentiment_df = pd.DataFrame(data["comparative_sentiment_score"])
|
74 |
+
fig = px.bar(sentiment_df, title="Sentiment Analysis by Source")
|
75 |
+
st.plotly_chart(fig)
|
76 |
+
else:
|
77 |
+
st.warning("No articles found for this company.")
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|