Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
import re | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import edge_tts | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
) | |
from transformers.image_utils import load_image | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
DESCRIPTION = """ | |
# Gen Vision 🎃 | |
Separate Tabs for Chat, Image Generation (LoRA), Qwen2 VL OCR and Text-to-Speech | |
""" | |
css = ''' | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: #fff; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
''' | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# ----------------------- | |
# Progress Bar Helper | |
# ----------------------- | |
def progress_bar_html(label: str) -> str: | |
""" | |
Returns an HTML snippet for a thin progress bar with a label. | |
The progress bar is styled as a dark red animated bar. | |
""" | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #DDA0DD; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #FF00FF; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
# ----------------------- | |
# Text Generation Setup (Chat) | |
# ----------------------- | |
model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
# ----------------------- | |
# TTS Setup | |
# ----------------------- | |
TTS_VOICES = [ | |
"en-US-JennyNeural", | |
"en-US-GuyNeural", | |
] | |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
"""Convert text to speech using Edge TTS and save as MP3""" | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
# ----------------------- | |
# Utility: Clean Chat History | |
# ----------------------- | |
def clean_chat_history(chat_history): | |
""" | |
Filter out any chat entries whose "content" is not a string. | |
""" | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
# ----------------------- | |
# Qwen2 VL OCR Setup | |
# ----------------------- | |
OCR_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(OCR_MODEL_ID, trust_remote_code=True) | |
model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
OCR_MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
# ----------------------- | |
# Stable Diffusion Image Generation Setup (LoRA) | |
# ----------------------- | |
MAX_SEED = np.iinfo(np.int32).max | |
USE_TORCH_COMPILE = False | |
ENABLE_CPU_OFFLOAD = False | |
if torch.cuda.is_available(): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
# LoRA options with one example for each. | |
LORA_OPTIONS = { | |
"Realism": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"), | |
"Pixar": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"), | |
"Photoshoot": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"), | |
"Clothing": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"), | |
"Interior": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"), | |
"Fashion": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"), | |
"Minimalistic": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"), | |
"Modern": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"), | |
"Animaliea": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"), | |
"Wallpaper": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"), | |
"Cars": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"), | |
"PencilArt": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"), | |
"ArtMinimalistic": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"), | |
} | |
# Load all LoRA weights | |
for model_name, weight_name, adapter_name in LORA_OPTIONS.values(): | |
pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name) | |
pipe.to("cuda") | |
else: | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=torch.float32, | |
use_safetensors=True, | |
).to(device) | |
def save_image(img: Image.Image) -> str: | |
"""Save a PIL image with a unique filename and return the path.""" | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate_image(prompt: str, negative_prompt: str, seed: int, width: int, height: int, guidance_scale: float, randomize_seed: bool, lora_model: str): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
effective_negative_prompt = negative_prompt # Use provided negative prompt if any | |
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model] | |
pipe.set_adapters(adapter_name) | |
outputs = pipe( | |
prompt=prompt, | |
negative_prompt=effective_negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=28, | |
num_images_per_prompt=1, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
) | |
images = outputs.images | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
# ----------------------- | |
# Chat Generation Function (Text-only) | |
# ----------------------- | |
def generate_chat(input_text: str, chat_history: list, max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float): | |
conversation = clean_chat_history(chat_history) | |
conversation.append({"role": "user", "content": input_text}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
for new_text in streamer: | |
outputs.append(new_text) | |
final_response = "".join(outputs) | |
chat_history.append({"role": "assistant", "content": final_response}) | |
return chat_history | |
# ----------------------- | |
# Qwen2 VL OCR Function (Multimodal) | |
# ----------------------- | |
def generate_ocr(text: str, files, max_new_tokens: int): | |
if files: | |
if isinstance(files, list) and len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif isinstance(files, list) and len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [load_image(files)] | |
messages = [{ | |
"role": "user", | |
"content": [*([{"type": "image", "image": image} for image in images]), | |
{"type": "text", "text": text}] | |
}] | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
return buffer | |
else: | |
return "No images provided." | |
# ----------------------- | |
# Text-to-Speech Function | |
# ----------------------- | |
def generate_tts(text: str, voice: str): | |
output_file = asyncio.run(text_to_speech(text, voice)) | |
return output_file | |
# ----------------------- | |
# Gradio Interface with Tabs | |
# ----------------------- | |
with gr.Blocks(css=css, title="Gen Vision") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab("Chat Interface"): | |
with gr.Row(): | |
chat_history = gr.Chatbot(label="Chat History") | |
with gr.Row(): | |
chat_input = gr.Textbox(placeholder="Enter your message", label="Your Message") | |
with gr.Row(): | |
max_new_tokens_slider = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
with gr.Row(): | |
top_p_slider = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
top_k_slider = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
send_btn = gr.Button("Send") | |
send_btn.click( | |
fn=generate_chat, | |
inputs=[chat_input, chat_history, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repetition_penalty_slider], | |
outputs=chat_history, | |
) | |
with gr.Tab("Image Generation"): | |
image_prompt = gr.Textbox(label="Prompt", placeholder="Enter image prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt") | |
seed_input = gr.Number(label="Seed", value=0) | |
width_slider = gr.Slider(label="Width", minimum=256, maximum=2048, step=64, value=1024) | |
height_slider = gr.Slider(label="Height", minimum=256, maximum=2048, step=64, value=1024) | |
guidance_scale_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=3.0) | |
randomize_checkbox = gr.Checkbox(label="Randomize Seed", value=True) | |
lora_dropdown = gr.Dropdown(label="LoRA Style", choices=list(LORA_OPTIONS.keys()), value="Realism") | |
generate_img_btn = gr.Button("Generate Image") | |
img_output = gr.Image(label="Generated Image") | |
seed_output = gr.Number(label="Used Seed") | |
generate_img_btn.click( | |
fn=generate_image, | |
inputs=[image_prompt, negative_prompt, seed_input, width_slider, height_slider, guidance_scale_slider, randomize_checkbox, lora_dropdown], | |
outputs=[img_output, seed_output], | |
) | |
with gr.Tab("Qwen 2 VL OCR"): | |
ocr_text = gr.Textbox(label="Text Prompt", placeholder="Enter prompt for OCR") | |
file_input = gr.File(label="Upload Images", file_count="multiple") | |
ocr_max_new_tokens = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
ocr_btn = gr.Button("Run OCR") | |
ocr_output = gr.Textbox(label="OCR Output") | |
ocr_btn.click( | |
fn=generate_ocr, | |
inputs=[ocr_text, file_input, ocr_max_new_tokens], | |
outputs=ocr_output, | |
) | |
with gr.Tab("Text-to-Speech"): | |
tts_text = gr.Textbox(label="Text", placeholder="Enter text for TTS") | |
voice_dropdown = gr.Dropdown(label="Voice", choices=TTS_VOICES, value=TTS_VOICES[0]) | |
tts_btn = gr.Button("Generate Audio") | |
tts_audio = gr.Audio(label="Audio Output", type="filepath") | |
tts_btn.click( | |
fn=generate_tts, | |
inputs=[tts_text, voice_dropdown], | |
outputs=tts_audio, | |
) | |
demo.queue(max_size=20).launch(share=True) |