import os import random import uuid import json import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import DiffusionPipeline from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler # EulerAncestralDiscreteScheduler not explicitly used but imported from typing import Tuple bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) default_negative = os.getenv("default_negative","") def check_text(prompt, negative=""): for i in bad_words: if i in prompt: return True for i in bad_words_negative: if i in negative: return True return False style_list = [ { "name": "Photo", "prompt": "cinematic photo {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly detailed", "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", }, { "name": "Cinematic", "prompt": "cinematic still {prompt}. emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", }, { "name": "Anime", "prompt": "anime artwork {prompt}. anime style, key visual, vibrant, studio anime, highly detailed", "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", }, { "name": "3D Model", "prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting", "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", }, { "name": "(No style)", "prompt": "{prompt}", "negative_prompt": "", }, ] DESCRIPTION = """## """ styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "Photo" def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) if not negative: negative = "" return p.replace("{prompt}", positive), n + negative if not torch.cuda.is_available(): DESCRIPTION += "\n

⚠️Running on CPU, This may not work on CPU.

" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") NUM_IMAGES_PER_PROMPT = 1 if torch.cuda.is_available(): pipe = StableDiffusionXLPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False, variant="fp16" ) pipe2 = StableDiffusionXLPipeline.from_pretrained( "SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False, variant="fp16" ) if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() pipe2.enable_model_cpu_offload() else: pipe.to(device) pipe2.to(device) print("Loaded on Device!") if USE_TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True) print("Model Compiled!") def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU(duration=30) @torch.no_grad() def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, style: str = DEFAULT_STYLE_NAME, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, randomize_seed: bool = False, use_resolution_binning: bool = True, # This parameter is not exposed in the UI by default progress=gr.Progress(track_tqdm=True), ): if check_text(prompt, negative_prompt): raise ValueError("Prompt contains restricted words.") prompt, negative_prompt_from_style = apply_style(style, prompt, "") # Apply style positive first # Combine negative prompts if use_negative_prompt: final_negative_prompt = negative_prompt_from_style + " " + negative_prompt + " " + default_negative else: final_negative_prompt = negative_prompt_from_style + " " + default_negative final_negative_prompt = final_negative_prompt.strip() seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator(device=device).manual_seed(seed) # Ensure generator is on the correct device options = { "prompt": prompt, "negative_prompt": final_negative_prompt, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": 25, # This is hardcoded, UI slider for steps is not connected "generator": generator, "num_images_per_prompt": NUM_IMAGES_PER_PROMPT, # UI slider for images is not connected to this # "use_resolution_binning": use_resolution_binning, # This was in original code, but not defined. Diffusers handles it. "output_type": "pil", } # If on CPU, ensure generator is for CPU if device.type == 'cpu': generator = torch.Generator(device='cpu').manual_seed(seed) options["generator"] = generator images = [] if 'pipe' in globals(): # Check if pipes are loaded (i.e. on GPU) images.extend(pipe(**options).images) images.extend(pipe2(**options).images) else: # Fallback for CPU or if pipes are not loaded (though the DESCRIPTION warns about CPU) # This part would need a CPU-compatible pipeline if one isn't loaded. # For now, it will likely error if pipe/pipe2 aren't available. # Or, we can return a placeholder or raise a specific error. # To prevent errors if running without GPU and models didn't load: placeholder_image = Image.new('RGB', (width, height), color = 'grey') draw = ImageDraw.Draw(placeholder_image) draw.text((10, 10), "GPU models not loaded. Cannot generate image.", fill=(255,0,0)) images.append(placeholder_image) image_paths = [save_image(img) for img in images] return image_paths, seed examples = [ "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)", ] css = ''' .gradio-container { max-width: 590px !important; /* Existing style */ margin: 0 auto !important; /* Existing style */ } h1 { text-align: center; /* Existing style */ } footer { visibility: hidden; /* Existing style */ } ''' with gr.Blocks(theme="YTheme/GMaterial", css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Row(): prompt = gr.Text( show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Gallery(label="Result", columns=1, preview=True) # columns=1 for single image below each other if multiple with gr.Accordion("Advanced options", open=False): style_selection = gr.Dropdown( # MODIFIED: Was gr.Radio, moved into accordion label="Image Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, interactive=True, show_label=True, container=True, ) use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt (appended to style's negative)", value="(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck", visible=True, ) # Note: num_inference_steps and num_images_per_prompt sliders are defined in UI # but not wired to the generate function's parameters that control these aspects. # Keeping them as is, per "Don't alter the remaining functionality". with gr.Row(): num_inference_steps = gr.Slider( # This UI element is not connected to the backend label="Steps (Not Connected)", minimum=10, maximum=60, step=1, value=20, # Default value in UI ) with gr.Row(): num_images_per_prompt = gr.Slider( # This UI element is not connected to the backend label="Images (Not Connected)", minimum=1, maximum=4, step=1, value=2, # Default value in UI (backend NUM_IMAGES_PER_PROMPT is 1, resulting in 2 total) ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, visible=True ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE step=8, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE step=8, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0, ) # Original style_selection gr.Row has been removed from here. gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], # seed output is good for reproducibility fn=generate, cache_examples=CACHE_EXAMPLES, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, # Allow submitting negative prompt to trigger run run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, style_selection, # style_selection is correctly in inputs seed, width, height, guidance_scale, randomize_seed, ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": from PIL import ImageDraw # Add ImageDraw import for CPU placeholder demo.queue(max_size=20).launch(ssr_mode=True, show_error=True, share=True)