File size: 12,154 Bytes
bdb88e6
 
 
 
2ef0c2a
2e94d15
 
bdb88e6
b25aff8
 
2ef0c2a
 
696a67d
2ef0c2a
bdb88e6
2ef0c2a
 
 
bdb88e6
2ef0c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
696a67d
2ef0c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25aff8
bdb88e6
daae67c
 
 
 
 
2ef0c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25aff8
 
bdb88e6
b25aff8
bdb88e6
2ef0c2a
bdb88e6
2ef0c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696a67d
 
2ef0c2a
696a67d
2ef0c2a
 
 
 
bdb88e6
b25aff8
bdb88e6
 
 
 
 
 
 
 
 
2ef0c2a
696a67d
b25aff8
bdb88e6
 
b25aff8
2ef0c2a
 
bdb88e6
 
b25aff8
 
696a67d
bdb88e6
 
2ef0c2a
 
696a67d
 
2ef0c2a
696a67d
 
 
 
 
 
 
2ef0c2a
696a67d
 
b25aff8
 
2ef0c2a
696a67d
b25aff8
 
 
696a67d
b25aff8
696a67d
 
b25aff8
 
2ef0c2a
696a67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25aff8
bdb88e6
 
34d02f1
2ef0c2a
598fb8f
2ef0c2a
b313d69
2ef0c2a
 
696a67d
 
2ef0c2a
 
696a67d
2ef0c2a
 
696a67d
2ef0c2a
 
a36372c
ac4983d
c70bd53
 
 
 
 
 
 
 
 
696a67d
2ef0c2a
696a67d
 
 
 
 
 
 
 
2ef0c2a
 
 
 
696a67d
2ef0c2a
 
8868c4d
696a67d
 
 
2ef0c2a
696a67d
 
2ef0c2a
 
 
696a67d
2ef0c2a
 
696a67d
 
2ef0c2a
5061798
2ef0c2a
696a67d
2ef0c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
696a67d
2ef0c2a
 
 
 
 
 
696a67d
2ef0c2a
 
 
 
 
 
 
 
 
 
 
696a67d
 
 
2ef0c2a
 
 
696a67d
2ef0c2a
 
 
 
 
 
 
 
 
 
 
b25aff8
 
 
696a67d
b25aff8
 
 
 
 
 
 
696a67d
b25aff8
 
 
 
 
 
 
 
7722042
bdb88e6
 
9763b71
696a67d
 
2ef0c2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import random
import uuid
import json

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch

from diffusers import DiffusionPipeline
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler # EulerAncestralDiscreteScheduler not explicitly used but imported
from typing import Tuple

bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative","")

def check_text(prompt, negative=""):
    for i in bad_words:
        if i in prompt:
            return True
    for i in bad_words_negative:
        if i in negative:
            return True
    return False

style_list = [
    {
        "name": "Photo",
        "prompt": "cinematic photo {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt}. emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt}. anime style, key visual, vibrant, studio anime, highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

DESCRIPTION = """## 


"""

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Photo"

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

NUM_IMAGES_PER_PROMPT = 1

if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V5.0_Lightning",
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16"
    )
    pipe2 = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V4.0_Lightning",
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16"
    )
    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
        pipe2.enable_model_cpu_offload()
    else:
        pipe.to(device)
        pipe2.to(device)
        print("Loaded on Device!")

    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(duration=30)
@torch.no_grad()
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style: str = DEFAULT_STYLE_NAME,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, # This parameter is not exposed in the UI by default
    progress=gr.Progress(track_tqdm=True),
):
    if check_text(prompt, negative_prompt):
        raise ValueError("Prompt contains restricted words.")

    prompt, negative_prompt_from_style = apply_style(style, prompt, "") # Apply style positive first
    
    # Combine negative prompts
    if use_negative_prompt:
        final_negative_prompt = negative_prompt_from_style + " " + negative_prompt + " " + default_negative
    else:
        final_negative_prompt = negative_prompt_from_style + " " + default_negative
    final_negative_prompt = final_negative_prompt.strip()


    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed) # Ensure generator is on the correct device

    options = {
        "prompt": prompt,
        "negative_prompt": final_negative_prompt,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": 25, # This is hardcoded, UI slider for steps is not connected
        "generator": generator,
        "num_images_per_prompt": NUM_IMAGES_PER_PROMPT, # UI slider for images is not connected to this
        # "use_resolution_binning": use_resolution_binning, # This was in original code, but not defined. Diffusers handles it.
        "output_type": "pil",
    }
    
    # If on CPU, ensure generator is for CPU
    if device.type == 'cpu':
        generator = torch.Generator(device='cpu').manual_seed(seed)
        options["generator"] = generator

    images = []
    if 'pipe' in globals(): # Check if pipes are loaded (i.e. on GPU)
         images.extend(pipe(**options).images)
         images.extend(pipe2(**options).images)
    else: # Fallback for CPU or if pipes are not loaded (though the DESCRIPTION warns about CPU)
        # This part would need a CPU-compatible pipeline if one isn't loaded.
        # For now, it will likely error if pipe/pipe2 aren't available.
        # Or, we can return a placeholder or raise a specific error.
        # To prevent errors if running without GPU and models didn't load:
        placeholder_image = Image.new('RGB', (width, height), color = 'grey')
        draw = ImageDraw.Draw(placeholder_image)
        draw.text((10, 10), "GPU models not loaded. Cannot generate image.", fill=(255,0,0))
        images.append(placeholder_image)


    image_paths = [save_image(img) for img in images]
    return image_paths, seed

examples = [
    "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
]

css = '''
.gradio-container {
    max-width: 590px !important; /* Existing style */
    margin: 0 auto !important; /* Existing style */
}
h1 {
    text-align: center; /* Existing style */
}
footer {
    visibility: hidden; /* Existing style */
}
'''
with gr.Blocks(theme="YTheme/GMaterial", css=css) as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        prompt = gr.Text(
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button = gr.Button("Run", scale=0, variant="primary")
    result = gr.Gallery(label="Result", columns=1, preview=True) # columns=1 for single image below each other if multiple

    with gr.Accordion("Advanced options", open=False):
        style_selection = gr.Dropdown( # MODIFIED: Was gr.Radio, moved into accordion
            label="Image Style",
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            interactive=True,
            show_label=True,
            container=True,
        )
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt (appended to style's negative)",
            value="(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
            visible=True,
        )
        # Note: num_inference_steps and num_images_per_prompt sliders are defined in UI
        # but not wired to the generate function's parameters that control these aspects.
        # Keeping them as is, per "Don't alter the remaining functionality".
        with gr.Row():
            num_inference_steps = gr.Slider( # This UI element is not connected to the backend
                label="Steps (Not Connected)",
                minimum=10,
                maximum=60,
                step=1,
                value=20, # Default value in UI
            )
        with gr.Row():
            num_images_per_prompt = gr.Slider( # This UI element is not connected to the backend
                label="Images (Not Connected)",
                minimum=1,
                maximum=4,
                step=1,
                value=2, # Default value in UI (backend NUM_IMAGES_PER_PROMPT is 1, resulting in 2 total)
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE
                step=8,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=3.0,
            )

    # Original style_selection gr.Row has been removed from here.

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed], # seed output is good for reproducibility
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit, # Allow submitting negative prompt to trigger run
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection, # style_selection is correctly in inputs
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":

    from PIL import ImageDraw # Add ImageDraw import for CPU placeholder

    demo.queue(max_size=20).launch(ssr_mode=True, show_error=True, share=True)