Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,154 Bytes
bdb88e6 2ef0c2a 2e94d15 bdb88e6 b25aff8 2ef0c2a 696a67d 2ef0c2a bdb88e6 2ef0c2a bdb88e6 2ef0c2a 696a67d 2ef0c2a b25aff8 bdb88e6 daae67c 2ef0c2a b25aff8 bdb88e6 b25aff8 bdb88e6 2ef0c2a bdb88e6 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a bdb88e6 b25aff8 bdb88e6 2ef0c2a 696a67d b25aff8 bdb88e6 b25aff8 2ef0c2a bdb88e6 b25aff8 696a67d bdb88e6 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a 696a67d b25aff8 2ef0c2a 696a67d b25aff8 696a67d b25aff8 696a67d b25aff8 2ef0c2a 696a67d b25aff8 bdb88e6 34d02f1 2ef0c2a 598fb8f 2ef0c2a b313d69 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a a36372c ac4983d c70bd53 696a67d 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a 8868c4d 696a67d 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a 5061798 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a 696a67d 2ef0c2a b25aff8 696a67d b25aff8 696a67d b25aff8 7722042 bdb88e6 9763b71 696a67d 2ef0c2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import random
import uuid
import json
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import DiffusionPipeline
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler # EulerAncestralDiscreteScheduler not explicitly used but imported
from typing import Tuple
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative","")
def check_text(prompt, negative=""):
for i in bad_words:
if i in prompt:
return True
for i in bad_words_negative:
if i in negative:
return True
return False
style_list = [
{
"name": "Photo",
"prompt": "cinematic photo {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt}. emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt}. anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
DESCRIPTION = """##
"""
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Photo"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
NUM_IMAGES_PER_PROMPT = 1
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False,
variant="fp16"
)
pipe2 = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning",
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False,
variant="fp16"
)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
pipe2.enable_model_cpu_offload()
else:
pipe.to(device)
pipe2.to(device)
print("Loaded on Device!")
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
print("Model Compiled!")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=30)
@torch.no_grad()
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style: str = DEFAULT_STYLE_NAME,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
use_resolution_binning: bool = True, # This parameter is not exposed in the UI by default
progress=gr.Progress(track_tqdm=True),
):
if check_text(prompt, negative_prompt):
raise ValueError("Prompt contains restricted words.")
prompt, negative_prompt_from_style = apply_style(style, prompt, "") # Apply style positive first
# Combine negative prompts
if use_negative_prompt:
final_negative_prompt = negative_prompt_from_style + " " + negative_prompt + " " + default_negative
else:
final_negative_prompt = negative_prompt_from_style + " " + default_negative
final_negative_prompt = final_negative_prompt.strip()
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed) # Ensure generator is on the correct device
options = {
"prompt": prompt,
"negative_prompt": final_negative_prompt,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": 25, # This is hardcoded, UI slider for steps is not connected
"generator": generator,
"num_images_per_prompt": NUM_IMAGES_PER_PROMPT, # UI slider for images is not connected to this
# "use_resolution_binning": use_resolution_binning, # This was in original code, but not defined. Diffusers handles it.
"output_type": "pil",
}
# If on CPU, ensure generator is for CPU
if device.type == 'cpu':
generator = torch.Generator(device='cpu').manual_seed(seed)
options["generator"] = generator
images = []
if 'pipe' in globals(): # Check if pipes are loaded (i.e. on GPU)
images.extend(pipe(**options).images)
images.extend(pipe2(**options).images)
else: # Fallback for CPU or if pipes are not loaded (though the DESCRIPTION warns about CPU)
# This part would need a CPU-compatible pipeline if one isn't loaded.
# For now, it will likely error if pipe/pipe2 aren't available.
# Or, we can return a placeholder or raise a specific error.
# To prevent errors if running without GPU and models didn't load:
placeholder_image = Image.new('RGB', (width, height), color = 'grey')
draw = ImageDraw.Draw(placeholder_image)
draw.text((10, 10), "GPU models not loaded. Cannot generate image.", fill=(255,0,0))
images.append(placeholder_image)
image_paths = [save_image(img) for img in images]
return image_paths, seed
examples = [
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
]
css = '''
.gradio-container {
max-width: 590px !important; /* Existing style */
margin: 0 auto !important; /* Existing style */
}
h1 {
text-align: center; /* Existing style */
}
footer {
visibility: hidden; /* Existing style */
}
'''
with gr.Blocks(theme="YTheme/GMaterial", css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
prompt = gr.Text(
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Gallery(label="Result", columns=1, preview=True) # columns=1 for single image below each other if multiple
with gr.Accordion("Advanced options", open=False):
style_selection = gr.Dropdown( # MODIFIED: Was gr.Radio, moved into accordion
label="Image Style",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
interactive=True,
show_label=True,
container=True,
)
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt (appended to style's negative)",
value="(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
visible=True,
)
# Note: num_inference_steps and num_images_per_prompt sliders are defined in UI
# but not wired to the generate function's parameters that control these aspects.
# Keeping them as is, per "Don't alter the remaining functionality".
with gr.Row():
num_inference_steps = gr.Slider( # This UI element is not connected to the backend
label="Steps (Not Connected)",
minimum=10,
maximum=60,
step=1,
value=20, # Default value in UI
)
with gr.Row():
num_images_per_prompt = gr.Slider( # This UI element is not connected to the backend
label="Images (Not Connected)",
minimum=1,
maximum=4,
step=1,
value=2, # Default value in UI (backend NUM_IMAGES_PER_PROMPT is 1, resulting in 2 total)
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=3.0,
)
# Original style_selection gr.Row has been removed from here.
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed], # seed output is good for reproducibility
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit, # Allow submitting negative prompt to trigger run
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection, # style_selection is correctly in inputs
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
from PIL import ImageDraw # Add ImageDraw import for CPU placeholder
demo.queue(max_size=20).launch(ssr_mode=True, show_error=True, share=True) |