prithivMLmods commited on
Commit
b7d34b4
·
verified ·
1 Parent(s): 787700e

Delete pipeline_flux_controlnet_inpaint.py

Browse files
Files changed (1) hide show
  1. pipeline_flux_controlnet_inpaint.py +0 -1049
pipeline_flux_controlnet_inpaint.py DELETED
@@ -1,1049 +0,0 @@
1
- import inspect
2
- from typing import Any, Callable, Dict, List, Optional, Union
3
-
4
- import numpy as np
5
- import torch
6
- from transformers import (
7
- CLIPTextModel,
8
- CLIPTokenizer,
9
- T5EncoderModel,
10
- T5TokenizerFast,
11
- )
12
-
13
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
14
- from diffusers.loaders import FluxLoraLoaderMixin
15
- from diffusers.models.autoencoders import AutoencoderKL
16
-
17
- from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
18
- from diffusers.utils import (
19
- USE_PEFT_BACKEND,
20
- is_torch_xla_available,
21
- logging,
22
- replace_example_docstring,
23
- scale_lora_layers,
24
- unscale_lora_layers,
25
- )
26
- from diffusers.utils.torch_utils import randn_tensor
27
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline
28
- from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
29
-
30
- from transformer_flux import FluxTransformer2DModel
31
- from controlnet_flux import FluxControlNetModel
32
-
33
- if is_torch_xla_available():
34
- import torch_xla.core.xla_model as xm
35
-
36
- XLA_AVAILABLE = True
37
- else:
38
- XLA_AVAILABLE = False
39
-
40
-
41
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
-
43
- EXAMPLE_DOC_STRING = """
44
- Examples:
45
- ```py
46
- >>> import torch
47
- >>> from diffusers.utils import load_image
48
- >>> from diffusers import FluxControlNetPipeline
49
- >>> from diffusers import FluxControlNetModel
50
-
51
- >>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny-alpha"
52
- >>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
53
- >>> pipe = FluxControlNetPipeline.from_pretrained(
54
- ... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
55
- ... )
56
- >>> pipe.to("cuda")
57
- >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
58
- >>> control_mask = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
59
- >>> prompt = "A girl in city, 25 years old, cool, futuristic"
60
- >>> image = pipe(
61
- ... prompt,
62
- ... control_image=control_image,
63
- ... controlnet_conditioning_scale=0.6,
64
- ... num_inference_steps=28,
65
- ... guidance_scale=3.5,
66
- ... ).images[0]
67
- >>> image.save("flux.png")
68
- ```
69
- """
70
-
71
-
72
- # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
73
- def calculate_shift(
74
- image_seq_len,
75
- base_seq_len: int = 256,
76
- max_seq_len: int = 4096,
77
- base_shift: float = 0.5,
78
- max_shift: float = 1.16,
79
- ):
80
- m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
81
- b = base_shift - m * base_seq_len
82
- mu = image_seq_len * m + b
83
- return mu
84
-
85
-
86
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
87
- def retrieve_timesteps(
88
- scheduler,
89
- num_inference_steps: Optional[int] = None,
90
- device: Optional[Union[str, torch.device]] = None,
91
- timesteps: Optional[List[int]] = None,
92
- sigmas: Optional[List[float]] = None,
93
- **kwargs,
94
- ):
95
- """
96
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
97
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
98
-
99
- Args:
100
- scheduler (`SchedulerMixin`):
101
- The scheduler to get timesteps from.
102
- num_inference_steps (`int`):
103
- The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
104
- must be `None`.
105
- device (`str` or `torch.device`, *optional*):
106
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
107
- timesteps (`List[int]`, *optional*):
108
- Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
109
- `num_inference_steps` and `sigmas` must be `None`.
110
- sigmas (`List[float]`, *optional*):
111
- Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
112
- `num_inference_steps` and `timesteps` must be `None`.
113
-
114
- Returns:
115
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
116
- second element is the number of inference steps.
117
- """
118
- if timesteps is not None and sigmas is not None:
119
- raise ValueError(
120
- "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
121
- )
122
- if timesteps is not None:
123
- accepts_timesteps = "timesteps" in set(
124
- inspect.signature(scheduler.set_timesteps).parameters.keys()
125
- )
126
- if not accepts_timesteps:
127
- raise ValueError(
128
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
129
- f" timestep schedules. Please check whether you are using the correct scheduler."
130
- )
131
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
132
- timesteps = scheduler.timesteps
133
- num_inference_steps = len(timesteps)
134
- elif sigmas is not None:
135
- accept_sigmas = "sigmas" in set(
136
- inspect.signature(scheduler.set_timesteps).parameters.keys()
137
- )
138
- if not accept_sigmas:
139
- raise ValueError(
140
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
- f" sigmas schedules. Please check whether you are using the correct scheduler."
142
- )
143
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
144
- timesteps = scheduler.timesteps
145
- num_inference_steps = len(timesteps)
146
- else:
147
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
148
- timesteps = scheduler.timesteps
149
- return timesteps, num_inference_steps
150
-
151
-
152
- class FluxControlNetInpaintingPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
153
- r"""
154
- The Flux pipeline for text-to-image generation.
155
-
156
- Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
157
-
158
- Args:
159
- transformer ([`FluxTransformer2DModel`]):
160
- Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
161
- scheduler ([`FlowMatchEulerDiscreteScheduler`]):
162
- A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
163
- vae ([`AutoencoderKL`]):
164
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
165
- text_encoder ([`CLIPTextModel`]):
166
- [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
167
- the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
168
- text_encoder_2 ([`T5EncoderModel`]):
169
- [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
170
- the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
171
- tokenizer (`CLIPTokenizer`):
172
- Tokenizer of class
173
- [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
174
- tokenizer_2 (`T5TokenizerFast`):
175
- Second Tokenizer of class
176
- [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
177
- """
178
-
179
- model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
180
- _optional_components = []
181
- _callback_tensor_inputs = ["latents", "prompt_embeds"]
182
-
183
- def __init__(
184
- self,
185
- scheduler: FlowMatchEulerDiscreteScheduler,
186
- vae: AutoencoderKL,
187
- text_encoder: CLIPTextModel,
188
- tokenizer: CLIPTokenizer,
189
- text_encoder_2: T5EncoderModel,
190
- tokenizer_2: T5TokenizerFast,
191
- transformer: FluxTransformer2DModel,
192
- controlnet: FluxControlNetModel,
193
- ):
194
- super().__init__()
195
-
196
- self.register_modules(
197
- vae=vae,
198
- text_encoder=text_encoder,
199
- text_encoder_2=text_encoder_2,
200
- tokenizer=tokenizer,
201
- tokenizer_2=tokenizer_2,
202
- transformer=transformer,
203
- scheduler=scheduler,
204
- controlnet=controlnet,
205
- )
206
- self.vae_scale_factor = (
207
- 2 ** (len(self.vae.config.block_out_channels))
208
- if hasattr(self, "vae") and self.vae is not None
209
- else 16
210
- )
211
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_rgb=True, do_normalize=True)
212
- self.mask_processor = VaeImageProcessor(
213
- vae_scale_factor=self.vae_scale_factor,
214
- do_resize=True,
215
- do_convert_grayscale=True,
216
- do_normalize=False,
217
- do_binarize=True,
218
- )
219
- self.tokenizer_max_length = (
220
- self.tokenizer.model_max_length
221
- if hasattr(self, "tokenizer") and self.tokenizer is not None
222
- else 77
223
- )
224
- self.default_sample_size = 64
225
-
226
- @property
227
- def do_classifier_free_guidance(self):
228
- return self._guidance_scale > 1
229
-
230
- def _get_t5_prompt_embeds(
231
- self,
232
- prompt: Union[str, List[str]] = None,
233
- num_images_per_prompt: int = 1,
234
- max_sequence_length: int = 512,
235
- device: Optional[torch.device] = None,
236
- dtype: Optional[torch.dtype] = None,
237
- ):
238
- device = device or self._execution_device
239
- dtype = dtype or self.text_encoder.dtype
240
-
241
- prompt = [prompt] if isinstance(prompt, str) else prompt
242
- batch_size = len(prompt)
243
-
244
- text_inputs = self.tokenizer_2(
245
- prompt,
246
- padding="max_length",
247
- max_length=max_sequence_length,
248
- truncation=True,
249
- return_length=False,
250
- return_overflowing_tokens=False,
251
- return_tensors="pt",
252
- )
253
- text_input_ids = text_inputs.input_ids
254
- untruncated_ids = self.tokenizer_2(
255
- prompt, padding="longest", return_tensors="pt"
256
- ).input_ids
257
-
258
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
259
- text_input_ids, untruncated_ids
260
- ):
261
- removed_text = self.tokenizer_2.batch_decode(
262
- untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
263
- )
264
- logger.warning(
265
- "The following part of your input was truncated because `max_sequence_length` is set to "
266
- f" {max_sequence_length} tokens: {removed_text}"
267
- )
268
-
269
- prompt_embeds = self.text_encoder_2(
270
- text_input_ids.to(device), output_hidden_states=False
271
- )[0]
272
-
273
- dtype = self.text_encoder_2.dtype
274
- prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
275
-
276
- _, seq_len, _ = prompt_embeds.shape
277
-
278
- # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
279
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
280
- prompt_embeds = prompt_embeds.view(
281
- batch_size * num_images_per_prompt, seq_len, -1
282
- )
283
-
284
- return prompt_embeds
285
-
286
- def _get_clip_prompt_embeds(
287
- self,
288
- prompt: Union[str, List[str]],
289
- num_images_per_prompt: int = 1,
290
- device: Optional[torch.device] = None,
291
- ):
292
- device = device or self._execution_device
293
-
294
- prompt = [prompt] if isinstance(prompt, str) else prompt
295
- batch_size = len(prompt)
296
-
297
- text_inputs = self.tokenizer(
298
- prompt,
299
- padding="max_length",
300
- max_length=self.tokenizer_max_length,
301
- truncation=True,
302
- return_overflowing_tokens=False,
303
- return_length=False,
304
- return_tensors="pt",
305
- )
306
-
307
- text_input_ids = text_inputs.input_ids
308
- untruncated_ids = self.tokenizer(
309
- prompt, padding="longest", return_tensors="pt"
310
- ).input_ids
311
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
312
- text_input_ids, untruncated_ids
313
- ):
314
- removed_text = self.tokenizer.batch_decode(
315
- untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
316
- )
317
- logger.warning(
318
- "The following part of your input was truncated because CLIP can only handle sequences up to"
319
- f" {self.tokenizer_max_length} tokens: {removed_text}"
320
- )
321
- prompt_embeds = self.text_encoder(
322
- text_input_ids.to(device), output_hidden_states=False
323
- )
324
-
325
- # Use pooled output of CLIPTextModel
326
- prompt_embeds = prompt_embeds.pooler_output
327
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
328
-
329
- # duplicate text embeddings for each generation per prompt, using mps friendly method
330
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
331
- prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
332
-
333
- return prompt_embeds
334
-
335
- def encode_prompt(
336
- self,
337
- prompt: Union[str, List[str]],
338
- prompt_2: Union[str, List[str]],
339
- device: Optional[torch.device] = None,
340
- num_images_per_prompt: int = 1,
341
- do_classifier_free_guidance: bool = True,
342
- negative_prompt: Optional[Union[str, List[str]]] = None,
343
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
344
- prompt_embeds: Optional[torch.FloatTensor] = None,
345
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
346
- max_sequence_length: int = 512,
347
- lora_scale: Optional[float] = None,
348
- ):
349
- r"""
350
-
351
- Args:
352
- prompt (`str` or `List[str]`, *optional*):
353
- prompt to be encoded
354
- prompt_2 (`str` or `List[str]`, *optional*):
355
- The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
356
- used in all text-encoders
357
- device: (`torch.device`):
358
- torch device
359
- num_images_per_prompt (`int`):
360
- number of images that should be generated per prompt
361
- do_classifier_free_guidance (`bool`):
362
- whether to use classifier-free guidance or not
363
- negative_prompt (`str` or `List[str]`, *optional*):
364
- negative prompt to be encoded
365
- negative_prompt_2 (`str` or `List[str]`, *optional*):
366
- negative prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is
367
- used in all text-encoders
368
- prompt_embeds (`torch.FloatTensor`, *optional*):
369
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
370
- provided, text embeddings will be generated from `prompt` input argument.
371
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
372
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
373
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
374
- clip_skip (`int`, *optional*):
375
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
376
- the output of the pre-final layer will be used for computing the prompt embeddings.
377
- lora_scale (`float`, *optional*):
378
- A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
379
- """
380
- device = device or self._execution_device
381
-
382
- # set lora scale so that monkey patched LoRA
383
- # function of text encoder can correctly access it
384
- if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
385
- self._lora_scale = lora_scale
386
-
387
- # dynamically adjust the LoRA scale
388
- if self.text_encoder is not None and USE_PEFT_BACKEND:
389
- scale_lora_layers(self.text_encoder, lora_scale)
390
- if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
391
- scale_lora_layers(self.text_encoder_2, lora_scale)
392
-
393
- prompt = [prompt] if isinstance(prompt, str) else prompt
394
- if prompt is not None:
395
- batch_size = len(prompt)
396
- else:
397
- batch_size = prompt_embeds.shape[0]
398
-
399
- if prompt_embeds is None:
400
- prompt_2 = prompt_2 or prompt
401
- prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
402
-
403
- # We only use the pooled prompt output from the CLIPTextModel
404
- pooled_prompt_embeds = self._get_clip_prompt_embeds(
405
- prompt=prompt,
406
- device=device,
407
- num_images_per_prompt=num_images_per_prompt,
408
- )
409
- prompt_embeds = self._get_t5_prompt_embeds(
410
- prompt=prompt_2,
411
- num_images_per_prompt=num_images_per_prompt,
412
- max_sequence_length=max_sequence_length,
413
- device=device,
414
- )
415
-
416
- if do_classifier_free_guidance:
417
- # 处理 negative prompt
418
- negative_prompt = negative_prompt or ""
419
- negative_prompt_2 = negative_prompt_2 or negative_prompt
420
-
421
- negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
422
- negative_prompt,
423
- device=device,
424
- num_images_per_prompt=num_images_per_prompt,
425
- )
426
- negative_prompt_embeds = self._get_t5_prompt_embeds(
427
- negative_prompt_2,
428
- num_images_per_prompt=num_images_per_prompt,
429
- max_sequence_length=max_sequence_length,
430
- device=device,
431
- )
432
- else:
433
- negative_pooled_prompt_embeds = None
434
- negative_prompt_embeds = None
435
-
436
- if self.text_encoder is not None:
437
- if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
438
- # Retrieve the original scale by scaling back the LoRA layers
439
- unscale_lora_layers(self.text_encoder, lora_scale)
440
-
441
- if self.text_encoder_2 is not None:
442
- if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
443
- # Retrieve the original scale by scaling back the LoRA layers
444
- unscale_lora_layers(self.text_encoder_2, lora_scale)
445
-
446
- text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(
447
- device=device, dtype=self.text_encoder.dtype
448
- )
449
-
450
- return prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds,text_ids
451
-
452
- def check_inputs(
453
- self,
454
- prompt,
455
- prompt_2,
456
- height,
457
- width,
458
- prompt_embeds=None,
459
- pooled_prompt_embeds=None,
460
- callback_on_step_end_tensor_inputs=None,
461
- max_sequence_length=None,
462
- ):
463
- if height % 8 != 0 or width % 8 != 0:
464
- raise ValueError(
465
- f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
466
- )
467
-
468
- if callback_on_step_end_tensor_inputs is not None and not all(
469
- k in self._callback_tensor_inputs
470
- for k in callback_on_step_end_tensor_inputs
471
- ):
472
- raise ValueError(
473
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
474
- )
475
-
476
- if prompt is not None and prompt_embeds is not None:
477
- raise ValueError(
478
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
479
- " only forward one of the two."
480
- )
481
- elif prompt_2 is not None and prompt_embeds is not None:
482
- raise ValueError(
483
- f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
484
- " only forward one of the two."
485
- )
486
- elif prompt is None and prompt_embeds is None:
487
- raise ValueError(
488
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
489
- )
490
- elif prompt is not None and (
491
- not isinstance(prompt, str) and not isinstance(prompt, list)
492
- ):
493
- raise ValueError(
494
- f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
495
- )
496
- elif prompt_2 is not None and (
497
- not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
498
- ):
499
- raise ValueError(
500
- f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
501
- )
502
-
503
- if prompt_embeds is not None and pooled_prompt_embeds is None:
504
- raise ValueError(
505
- "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
506
- )
507
-
508
- if max_sequence_length is not None and max_sequence_length > 512:
509
- raise ValueError(
510
- f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}"
511
- )
512
-
513
- # Copied from diffusers.pipelines.flux.pipeline_flux._prepare_latent_image_ids
514
- @staticmethod
515
- def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
516
- latent_image_ids = torch.zeros(height // 2, width // 2, 3)
517
- latent_image_ids[..., 1] = (
518
- latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
519
- )
520
- latent_image_ids[..., 2] = (
521
- latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
522
- )
523
-
524
- (
525
- latent_image_id_height,
526
- latent_image_id_width,
527
- latent_image_id_channels,
528
- ) = latent_image_ids.shape
529
-
530
- latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
531
- latent_image_ids = latent_image_ids.reshape(
532
- batch_size,
533
- latent_image_id_height * latent_image_id_width,
534
- latent_image_id_channels,
535
- )
536
-
537
- return latent_image_ids.to(device=device, dtype=dtype)
538
-
539
- # Copied from diffusers.pipelines.flux.pipeline_flux._pack_latents
540
- @staticmethod
541
- def _pack_latents(latents, batch_size, num_channels_latents, height, width):
542
- latents = latents.view(
543
- batch_size, num_channels_latents, height // 2, 2, width // 2, 2
544
- )
545
- latents = latents.permute(0, 2, 4, 1, 3, 5)
546
- latents = latents.reshape(
547
- batch_size, (height // 2) * (width // 2), num_channels_latents * 4
548
- )
549
-
550
- return latents
551
-
552
- # Copied from diffusers.pipelines.flux.pipeline_flux._unpack_latents
553
- @staticmethod
554
- def _unpack_latents(latents, height, width, vae_scale_factor):
555
- batch_size, num_patches, channels = latents.shape
556
-
557
- height = height // vae_scale_factor
558
- width = width // vae_scale_factor
559
-
560
- latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
561
- latents = latents.permute(0, 3, 1, 4, 2, 5)
562
-
563
- latents = latents.reshape(
564
- batch_size, channels // (2 * 2), height * 2, width * 2
565
- )
566
-
567
- return latents
568
-
569
- # Copied from diffusers.pipelines.flux.pipeline_flux.prepare_latents
570
- def prepare_latents(
571
- self,
572
- batch_size,
573
- num_channels_latents,
574
- height,
575
- width,
576
- dtype,
577
- device,
578
- generator,
579
- latents=None,
580
- ):
581
- height = 2 * (int(height) // self.vae_scale_factor)
582
- width = 2 * (int(width) // self.vae_scale_factor)
583
-
584
- shape = (batch_size, num_channels_latents, height, width)
585
-
586
- if latents is not None:
587
- latent_image_ids = self._prepare_latent_image_ids(
588
- batch_size, height, width, device, dtype
589
- )
590
- return latents.to(device=device, dtype=dtype), latent_image_ids
591
-
592
- if isinstance(generator, list) and len(generator) != batch_size:
593
- raise ValueError(
594
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
595
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
596
- )
597
-
598
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
599
- latents = self._pack_latents(
600
- latents, batch_size, num_channels_latents, height, width
601
- )
602
-
603
- latent_image_ids = self._prepare_latent_image_ids(
604
- batch_size, height, width, device, dtype
605
- )
606
-
607
- return latents, latent_image_ids
608
-
609
- # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
610
- def prepare_image(
611
- self,
612
- image,
613
- width,
614
- height,
615
- batch_size,
616
- num_images_per_prompt,
617
- device,
618
- dtype,
619
- ):
620
- if isinstance(image, torch.Tensor):
621
- pass
622
- else:
623
- image = self.image_processor.preprocess(image, height=height, width=width)
624
-
625
- image_batch_size = image.shape[0]
626
-
627
- if image_batch_size == 1:
628
- repeat_by = batch_size
629
- else:
630
- # image batch size is the same as prompt batch size
631
- repeat_by = num_images_per_prompt
632
-
633
- image = image.repeat_interleave(repeat_by, dim=0)
634
-
635
- image = image.to(device=device, dtype=dtype)
636
-
637
- return image
638
-
639
- def prepare_image_with_mask(
640
- self,
641
- image,
642
- mask,
643
- width,
644
- height,
645
- batch_size,
646
- num_images_per_prompt,
647
- device,
648
- dtype,
649
- do_classifier_free_guidance = False,
650
- ):
651
- # Prepare image
652
- if isinstance(image, torch.Tensor):
653
- pass
654
- else:
655
- image = self.image_processor.preprocess(image, height=height, width=width)
656
-
657
- image_batch_size = image.shape[0]
658
- if image_batch_size == 1:
659
- repeat_by = batch_size
660
- else:
661
- # image batch size is the same as prompt batch size
662
- repeat_by = num_images_per_prompt
663
- image = image.repeat_interleave(repeat_by, dim=0)
664
- image = image.to(device=device, dtype=dtype)
665
-
666
- # Prepare mask
667
- if isinstance(mask, torch.Tensor):
668
- pass
669
- else:
670
- mask = self.mask_processor.preprocess(mask, height=height, width=width)
671
- mask = mask.repeat_interleave(repeat_by, dim=0)
672
- mask = mask.to(device=device, dtype=dtype)
673
-
674
- # Get masked image
675
- masked_image = image.clone()
676
- masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1
677
-
678
- # Encode to latents
679
- image_latents = self.vae.encode(masked_image.to(self.vae.dtype)).latent_dist.sample()
680
- image_latents = (
681
- image_latents - self.vae.config.shift_factor
682
- ) * self.vae.config.scaling_factor
683
- image_latents = image_latents.to(dtype)
684
-
685
- mask = torch.nn.functional.interpolate(
686
- mask, size=(height // self.vae_scale_factor * 2, width // self.vae_scale_factor * 2)
687
- )
688
- mask = 1 - mask
689
-
690
- control_image = torch.cat([image_latents, mask], dim=1)
691
-
692
- # Pack cond latents
693
- packed_control_image = self._pack_latents(
694
- control_image,
695
- batch_size * num_images_per_prompt,
696
- control_image.shape[1],
697
- control_image.shape[2],
698
- control_image.shape[3],
699
- )
700
-
701
- if do_classifier_free_guidance:
702
- packed_control_image = torch.cat([packed_control_image] * 2)
703
-
704
- return packed_control_image, height, width
705
-
706
- @property
707
- def guidance_scale(self):
708
- return self._guidance_scale
709
-
710
- @property
711
- def joint_attention_kwargs(self):
712
- return self._joint_attention_kwargs
713
-
714
- @property
715
- def num_timesteps(self):
716
- return self._num_timesteps
717
-
718
- @property
719
- def interrupt(self):
720
- return self._interrupt
721
-
722
- @torch.no_grad()
723
- @replace_example_docstring(EXAMPLE_DOC_STRING)
724
- def __call__(
725
- self,
726
- prompt: Union[str, List[str]] = None,
727
- prompt_2: Optional[Union[str, List[str]]] = None,
728
- height: Optional[int] = None,
729
- width: Optional[int] = None,
730
- num_inference_steps: int = 28,
731
- timesteps: List[int] = None,
732
- guidance_scale: float = 7.0,
733
- true_guidance_scale: float = 3.5 ,
734
- negative_prompt: Optional[Union[str, List[str]]] = None,
735
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
736
- control_image: PipelineImageInput = None,
737
- control_mask: PipelineImageInput = None,
738
- controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
739
- num_images_per_prompt: Optional[int] = 1,
740
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
741
- latents: Optional[torch.FloatTensor] = None,
742
- prompt_embeds: Optional[torch.FloatTensor] = None,
743
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
744
- output_type: Optional[str] = "pil",
745
- return_dict: bool = True,
746
- joint_attention_kwargs: Optional[Dict[str, Any]] = None,
747
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
748
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
749
- max_sequence_length: int = 512,
750
- ):
751
- r"""
752
- Function invoked when calling the pipeline for generation.
753
-
754
- Args:
755
- prompt (`str` or `List[str]`, *optional*):
756
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
757
- instead.
758
- prompt_2 (`str` or `List[str]`, *optional*):
759
- The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
760
- will be used instead
761
- height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
762
- The height in pixels of the generated image. This is set to 1024 by default for the best results.
763
- width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
764
- The width in pixels of the generated image. This is set to 1024 by default for the best results.
765
- num_inference_steps (`int`, *optional*, defaults to 50):
766
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
767
- expense of slower inference.
768
- timesteps (`List[int]`, *optional*):
769
- Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
770
- in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
771
- passed will be used. Must be in descending order.
772
- guidance_scale (`float`, *optional*, defaults to 7.0):
773
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
774
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
775
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
776
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
777
- usually at the expense of lower image quality.
778
- num_images_per_prompt (`int`, *optional*, defaults to 1):
779
- The number of images to generate per prompt.
780
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
781
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
782
- to make generation deterministic.
783
- latents (`torch.FloatTensor`, *optional*):
784
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
785
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
786
- tensor will ge generated by sampling using the supplied random `generator`.
787
- prompt_embeds (`torch.FloatTensor`, *optional*):
788
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
789
- provided, text embeddings will be generated from `prompt` input argument.
790
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
791
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
792
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
793
- output_type (`str`, *optional*, defaults to `"pil"`):
794
- The output format of the generate image. Choose between
795
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
796
- return_dict (`bool`, *optional*, defaults to `True`):
797
- Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
798
- joint_attention_kwargs (`dict`, *optional*):
799
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
800
- `self.processor` in
801
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
802
- callback_on_step_end (`Callable`, *optional*):
803
- A function that calls at the end of each denoising steps during the inference. The function is called
804
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
805
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
806
- `callback_on_step_end_tensor_inputs`.
807
- callback_on_step_end_tensor_inputs (`List`, *optional*):
808
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
809
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
810
- `._callback_tensor_inputs` attribute of your pipeline class.
811
- max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
812
-
813
- Examples:
814
-
815
- Returns:
816
- [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
817
- is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
818
- images.
819
- """
820
-
821
- height = height or self.default_sample_size * self.vae_scale_factor
822
- width = width or self.default_sample_size * self.vae_scale_factor
823
-
824
- # 1. Check inputs. Raise error if not correct
825
- self.check_inputs(
826
- prompt,
827
- prompt_2,
828
- height,
829
- width,
830
- prompt_embeds=prompt_embeds,
831
- pooled_prompt_embeds=pooled_prompt_embeds,
832
- callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
833
- max_sequence_length=max_sequence_length,
834
- )
835
-
836
- self._guidance_scale = true_guidance_scale
837
- self._joint_attention_kwargs = joint_attention_kwargs
838
- self._interrupt = False
839
-
840
- # 2. Define call parameters
841
- if prompt is not None and isinstance(prompt, str):
842
- batch_size = 1
843
- elif prompt is not None and isinstance(prompt, list):
844
- batch_size = len(prompt)
845
- else:
846
- batch_size = prompt_embeds.shape[0]
847
-
848
- device = self._execution_device
849
- dtype = self.transformer.dtype
850
-
851
- lora_scale = (
852
- self.joint_attention_kwargs.get("scale", None)
853
- if self.joint_attention_kwargs is not None
854
- else None
855
- )
856
- (
857
- prompt_embeds,
858
- pooled_prompt_embeds,
859
- negative_prompt_embeds,
860
- negative_pooled_prompt_embeds,
861
- text_ids
862
- ) = self.encode_prompt(
863
- prompt=prompt,
864
- prompt_2=prompt_2,
865
- prompt_embeds=prompt_embeds,
866
- pooled_prompt_embeds=pooled_prompt_embeds,
867
- do_classifier_free_guidance = self.do_classifier_free_guidance,
868
- negative_prompt = negative_prompt,
869
- negative_prompt_2 = negative_prompt_2,
870
- device=device,
871
- num_images_per_prompt=num_images_per_prompt,
872
- max_sequence_length=max_sequence_length,
873
- lora_scale=lora_scale,
874
- )
875
-
876
- # 在 encode_prompt 之后
877
- if self.do_classifier_free_guidance:
878
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim = 0)
879
- pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim = 0)
880
- text_ids = torch.cat([text_ids, text_ids], dim = 0)
881
-
882
- # 3. Prepare control image
883
- num_channels_latents = self.transformer.config.in_channels // 4
884
- if isinstance(self.controlnet, FluxControlNetModel):
885
- control_image, height, width = self.prepare_image_with_mask(
886
- image=control_image,
887
- mask=control_mask,
888
- width=width,
889
- height=height,
890
- batch_size=batch_size * num_images_per_prompt,
891
- num_images_per_prompt=num_images_per_prompt,
892
- device=device,
893
- dtype=dtype,
894
- do_classifier_free_guidance=self.do_classifier_free_guidance,
895
- )
896
-
897
- # 4. Prepare latent variables
898
- num_channels_latents = self.transformer.config.in_channels // 4
899
- latents, latent_image_ids = self.prepare_latents(
900
- batch_size * num_images_per_prompt,
901
- num_channels_latents,
902
- height,
903
- width,
904
- prompt_embeds.dtype,
905
- device,
906
- generator,
907
- latents,
908
- )
909
-
910
- if self.do_classifier_free_guidance:
911
- latent_image_ids = torch.cat([latent_image_ids] * 2)
912
-
913
- # 5. Prepare timesteps
914
- sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
915
- image_seq_len = latents.shape[1]
916
- mu = calculate_shift(
917
- image_seq_len,
918
- self.scheduler.config.base_image_seq_len,
919
- self.scheduler.config.max_image_seq_len,
920
- self.scheduler.config.base_shift,
921
- self.scheduler.config.max_shift,
922
- )
923
- timesteps, num_inference_steps = retrieve_timesteps(
924
- self.scheduler,
925
- num_inference_steps,
926
- device,
927
- timesteps,
928
- sigmas,
929
- mu=mu,
930
- )
931
-
932
- num_warmup_steps = max(
933
- len(timesteps) - num_inference_steps * self.scheduler.order, 0
934
- )
935
- self._num_timesteps = len(timesteps)
936
-
937
- # 6. Denoising loop
938
- with self.progress_bar(total=num_inference_steps) as progress_bar:
939
- for i, t in enumerate(timesteps):
940
- if self.interrupt:
941
- continue
942
-
943
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
944
-
945
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
946
- timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
947
-
948
- # handle guidance
949
- if self.transformer.config.guidance_embeds:
950
- guidance = torch.tensor([guidance_scale], device=device)
951
- guidance = guidance.expand(latent_model_input.shape[0])
952
- else:
953
- guidance = None
954
-
955
- # controlnet
956
- (
957
- controlnet_block_samples,
958
- controlnet_single_block_samples,
959
- ) = self.controlnet(
960
- hidden_states=latent_model_input,
961
- controlnet_cond=control_image,
962
- conditioning_scale=controlnet_conditioning_scale,
963
- timestep=timestep / 1000,
964
- guidance=guidance,
965
- pooled_projections=pooled_prompt_embeds,
966
- encoder_hidden_states=prompt_embeds,
967
- txt_ids=text_ids,
968
- img_ids=latent_image_ids,
969
- joint_attention_kwargs=self.joint_attention_kwargs,
970
- return_dict=False,
971
- )
972
-
973
- noise_pred = self.transformer(
974
- hidden_states=latent_model_input,
975
- # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
976
- timestep=timestep / 1000,
977
- guidance=guidance,
978
- pooled_projections=pooled_prompt_embeds,
979
- encoder_hidden_states=prompt_embeds,
980
- controlnet_block_samples=[
981
- sample.to(dtype=self.transformer.dtype)
982
- for sample in controlnet_block_samples
983
- ],
984
- controlnet_single_block_samples=[
985
- sample.to(dtype=self.transformer.dtype)
986
- for sample in controlnet_single_block_samples
987
- ] if controlnet_single_block_samples is not None else controlnet_single_block_samples,
988
- txt_ids=text_ids,
989
- img_ids=latent_image_ids,
990
- joint_attention_kwargs=self.joint_attention_kwargs,
991
- return_dict=False,
992
- )[0]
993
-
994
- # 在生成循环中
995
- if self.do_classifier_free_guidance:
996
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
997
- noise_pred = noise_pred_uncond + true_guidance_scale * (noise_pred_text - noise_pred_uncond)
998
-
999
- # compute the previous noisy sample x_t -> x_t-1
1000
- latents_dtype = latents.dtype
1001
- latents = self.scheduler.step(
1002
- noise_pred, t, latents, return_dict=False
1003
- )[0]
1004
-
1005
- if latents.dtype != latents_dtype:
1006
- if torch.backends.mps.is_available():
1007
- # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1008
- latents = latents.to(latents_dtype)
1009
-
1010
- if callback_on_step_end is not None:
1011
- callback_kwargs = {}
1012
- for k in callback_on_step_end_tensor_inputs:
1013
- callback_kwargs[k] = locals()[k]
1014
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1015
-
1016
- latents = callback_outputs.pop("latents", latents)
1017
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1018
-
1019
- # call the callback, if provided
1020
- if i == len(timesteps) - 1 or (
1021
- (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
1022
- ):
1023
- progress_bar.update()
1024
-
1025
- if XLA_AVAILABLE:
1026
- xm.mark_step()
1027
-
1028
- if output_type == "latent":
1029
- image = latents
1030
-
1031
- else:
1032
- latents = self._unpack_latents(
1033
- latents, height, width, self.vae_scale_factor
1034
- )
1035
- latents = (
1036
- latents / self.vae.config.scaling_factor
1037
- ) + self.vae.config.shift_factor
1038
- latents = latents.to(self.vae.dtype)
1039
-
1040
- image = self.vae.decode(latents, return_dict=False)[0]
1041
- image = self.image_processor.postprocess(image, output_type=output_type)
1042
-
1043
- # Offload all models
1044
- self.maybe_free_model_hooks()
1045
-
1046
- if not return_dict:
1047
- return (image,)
1048
-
1049
- return FluxPipelineOutput(images=image)