Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
import os
|
2 |
import random
|
3 |
import uuid
|
|
|
4 |
import time
|
5 |
import asyncio
|
|
|
6 |
from threading import Thread
|
7 |
-
from typing import Tuple
|
8 |
|
9 |
import gradio as gr
|
10 |
import spaces
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
-
import
|
15 |
|
16 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
17 |
from transformers import (
|
18 |
AutoModelForCausalLM,
|
19 |
AutoTokenizer,
|
@@ -22,45 +22,151 @@ from transformers import (
|
|
22 |
AutoProcessor,
|
23 |
)
|
24 |
from transformers.image_utils import load_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# ---------------------------
|
27 |
-
# Global Settings and Devices
|
28 |
-
# ---------------------------
|
29 |
MAX_MAX_NEW_TOKENS = 2048
|
30 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
31 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
33 |
-
MAX_SEED = np.iinfo(np.int32).max
|
34 |
|
35 |
-
#
|
36 |
-
#
|
37 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
# Load SDXL pipeline (use GPU if available)
|
45 |
-
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
46 |
-
MODEL_ID_SD,
|
47 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
48 |
-
use_safetensors=True,
|
49 |
-
add_watermarker=False,
|
50 |
-
).to(device)
|
51 |
-
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
52 |
if torch.cuda.is_available():
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
62 |
|
63 |
def save_image(img: Image.Image) -> str:
|
|
|
64 |
unique_name = str(uuid.uuid4()) + ".png"
|
65 |
img.save(unique_name)
|
66 |
return unique_name
|
@@ -70,241 +176,158 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
70 |
seed = random.randint(0, MAX_SEED)
|
71 |
return seed
|
72 |
|
73 |
-
# LoRA options and style definitions
|
74 |
-
LORA_OPTIONS = {
|
75 |
-
"Realism (face/character)👦🏻": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
|
76 |
-
"Pixar (art/toons)🙀": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
|
77 |
-
"Photoshoot (camera/film)📸": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
|
78 |
-
"Clothing (hoodies/pant/shirts)👔": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
|
79 |
-
"Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
|
80 |
-
"Fashion Product (wearing/usable)👜": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
|
81 |
-
"Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
|
82 |
-
"Modern Clothing (trend/new)👕": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
|
83 |
-
"Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
|
84 |
-
"Liquid Wallpaper (minimal/illustration)🖼️": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
|
85 |
-
"Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
|
86 |
-
"Pencil Art (characteristic/creative)✏️": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
|
87 |
-
"Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
|
88 |
-
}
|
89 |
-
|
90 |
-
style_list = [
|
91 |
-
{
|
92 |
-
"name": "3840 x 2160",
|
93 |
-
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
94 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
95 |
-
},
|
96 |
-
{
|
97 |
-
"name": "2560 x 1440",
|
98 |
-
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
99 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"name": "HD+",
|
103 |
-
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
104 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
105 |
-
},
|
106 |
-
{
|
107 |
-
"name": "Style Zero",
|
108 |
-
"prompt": "{prompt}",
|
109 |
-
"negative_prompt": "",
|
110 |
-
},
|
111 |
-
]
|
112 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
113 |
-
DEFAULT_STYLE_NAME = "3840 x 2160"
|
114 |
-
STYLE_NAMES = list(styles.keys())
|
115 |
-
|
116 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
117 |
-
if style_name in styles:
|
118 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
119 |
-
else:
|
120 |
-
p, n = styles[DEFAULT_STYLE_NAME]
|
121 |
-
return p.replace("{prompt}", positive), n + negative
|
122 |
-
|
123 |
@spaces.GPU(duration=180, enable_queue=True)
|
124 |
-
def
|
125 |
-
prompt: str,
|
126 |
-
negative_prompt: str = "",
|
127 |
-
use_negative_prompt: bool = True,
|
128 |
-
seed: int = 0,
|
129 |
-
width: int = 1024,
|
130 |
-
height: int = 1024,
|
131 |
-
guidance_scale: float = 3,
|
132 |
-
randomize_seed: bool = False,
|
133 |
-
style_name: str = DEFAULT_STYLE_NAME,
|
134 |
-
lora_model: str = "Realism (face/character)👦🏻",
|
135 |
-
progress=gr.Progress(track_tqdm=True),
|
136 |
-
):
|
137 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
138 |
-
|
139 |
-
if not use_negative_prompt:
|
140 |
-
effective_negative_prompt = ""
|
141 |
-
# Set LoRA adapter based on selection
|
142 |
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
cross_attention_kwargs={"scale": 0.65},
|
155 |
-
output_type="pil",
|
156 |
)
|
157 |
-
|
|
|
158 |
return image_paths, seed
|
159 |
|
160 |
-
#
|
161 |
-
#
|
162 |
-
#
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
trust_remote_code=True,
|
168 |
-
torch_dtype=torch.float16
|
169 |
-
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
|
170 |
-
|
171 |
-
@spaces.GPU
|
172 |
-
def qwen2vl_ocr_generate(
|
173 |
-
prompt: str,
|
174 |
-
file: list,
|
175 |
-
max_new_tokens: int = 1024,
|
176 |
-
temperature: float = 0.6,
|
177 |
-
top_p: float = 0.9,
|
178 |
-
top_k: int = 50,
|
179 |
-
repetition_penalty: float = 1.2,
|
180 |
-
):
|
181 |
-
# In this tab, we assume the user supplies an image (or multiple images) for OCR.
|
182 |
-
images = []
|
183 |
-
if file:
|
184 |
-
# load image(s) using the helper function
|
185 |
-
for f in file:
|
186 |
-
images.append(load_image(f))
|
187 |
-
else:
|
188 |
-
# If no image provided, use an empty list
|
189 |
-
images = []
|
190 |
-
# Build message content: We use a simple chat template with text and images.
|
191 |
-
messages = [{
|
192 |
-
"role": "user",
|
193 |
-
"content": [
|
194 |
-
*[{"type": "image", "image": image} for image in images],
|
195 |
-
{"type": "text", "text": prompt},
|
196 |
-
]
|
197 |
-
}]
|
198 |
-
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
199 |
-
inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda" if torch.cuda.is_available() else "cpu")
|
200 |
-
# Use non-streaming generation for simplicity
|
201 |
-
output_ids = model_m.generate(
|
202 |
-
**inputs,
|
203 |
-
max_new_tokens=max_new_tokens,
|
204 |
-
do_sample=True,
|
205 |
-
temperature=temperature,
|
206 |
-
top_p=top_p,
|
207 |
-
top_k=top_k,
|
208 |
-
repetition_penalty=repetition_penalty,
|
209 |
-
)
|
210 |
-
final_response = processor.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
211 |
-
return final_response
|
212 |
-
|
213 |
-
# ---------------------------
|
214 |
-
# CHAT INTERFACE TAB (Text-only)
|
215 |
-
# ---------------------------
|
216 |
-
# Load text-only model and tokenizer
|
217 |
-
model_id_text = "prithivMLmods/FastThink-0.5B-Tiny"
|
218 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id_text)
|
219 |
-
model = AutoModelForCausalLM.from_pretrained(
|
220 |
-
model_id_text,
|
221 |
-
device_map="auto",
|
222 |
-
torch_dtype=torch.bfloat16,
|
223 |
-
)
|
224 |
-
model.eval()
|
225 |
-
|
226 |
-
def chat_generate(prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6,
|
227 |
-
top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
228 |
-
# For simplicity, use a basic generate without streaming.
|
229 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
230 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
231 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
232 |
input_ids = input_ids.to(model.device)
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
#
|
246 |
-
#
|
247 |
-
#
|
248 |
-
with gr.Blocks(title="
|
249 |
-
gr.Markdown(
|
250 |
|
251 |
-
with gr.Tab("
|
252 |
-
gr.Markdown("## Generate Images using SDXL + LoRA")
|
253 |
-
with gr.Row():
|
254 |
-
prompt_img = gr.Textbox(label="Prompt", placeholder="Enter your image prompt here")
|
255 |
-
negative_prompt_img = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt (optional)", lines=2)
|
256 |
with gr.Row():
|
257 |
-
|
258 |
-
seed_img = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
259 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
260 |
with gr.Row():
|
261 |
-
|
262 |
-
height_img = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024)
|
263 |
with gr.Row():
|
264 |
-
|
|
|
265 |
with gr.Row():
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
randomize_seed, style_selection, lora_selection],
|
275 |
-
outputs=[gallery, output_seed]
|
276 |
)
|
277 |
|
278 |
-
with gr.Tab("
|
279 |
-
gr.
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
289 |
)
|
290 |
|
291 |
-
with gr.Tab("
|
292 |
-
gr.
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
run_chat.click(
|
302 |
-
chat_generate,
|
303 |
-
inputs=[chat_input, max_tokens_chat, temperature_chat, top_p_chat, top_k_chat, rep_penalty_chat],
|
304 |
-
outputs=chat_output
|
305 |
)
|
306 |
|
307 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
-
|
310 |
-
demo.queue(max_size=20).launch(share=True)
|
|
|
1 |
import os
|
2 |
import random
|
3 |
import uuid
|
4 |
+
import json
|
5 |
import time
|
6 |
import asyncio
|
7 |
+
import re
|
8 |
from threading import Thread
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
import spaces
|
12 |
import torch
|
13 |
import numpy as np
|
14 |
from PIL import Image
|
15 |
+
import edge_tts
|
16 |
|
|
|
17 |
from transformers import (
|
18 |
AutoModelForCausalLM,
|
19 |
AutoTokenizer,
|
|
|
22 |
AutoProcessor,
|
23 |
)
|
24 |
from transformers.image_utils import load_image
|
25 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
26 |
+
|
27 |
+
DESCRIPTION = """
|
28 |
+
# Gen Vision 🎃
|
29 |
+
Separate Tabs for Chat, Image Generation (LoRA), Qwen2 VL OCR and Text-to-Speech
|
30 |
+
"""
|
31 |
+
|
32 |
+
css = '''
|
33 |
+
h1 {
|
34 |
+
text-align: center;
|
35 |
+
display: block;
|
36 |
+
}
|
37 |
+
|
38 |
+
#duplicate-button {
|
39 |
+
margin: auto;
|
40 |
+
color: #fff;
|
41 |
+
background: #1565c0;
|
42 |
+
border-radius: 100vh;
|
43 |
+
}
|
44 |
+
'''
|
45 |
|
|
|
|
|
|
|
46 |
MAX_MAX_NEW_TOKENS = 2048
|
47 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
48 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
49 |
+
|
50 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
51 |
|
52 |
+
# -----------------------
|
53 |
+
# Progress Bar Helper
|
54 |
+
# -----------------------
|
55 |
+
def progress_bar_html(label: str) -> str:
|
56 |
+
"""
|
57 |
+
Returns an HTML snippet for a thin progress bar with a label.
|
58 |
+
The progress bar is styled as a dark red animated bar.
|
59 |
+
"""
|
60 |
+
return f'''
|
61 |
+
<div style="display: flex; align-items: center;">
|
62 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
63 |
+
<div style="width: 110px; height: 5px; background-color: #DDA0DD; border-radius: 2px; overflow: hidden;">
|
64 |
+
<div style="width: 100%; height: 100%; background-color: #FF00FF; animation: loading 1.5s linear infinite;"></div>
|
65 |
+
</div>
|
66 |
+
</div>
|
67 |
+
<style>
|
68 |
+
@keyframes loading {{
|
69 |
+
0% {{ transform: translateX(-100%); }}
|
70 |
+
100% {{ transform: translateX(100%); }}
|
71 |
+
}}
|
72 |
+
</style>
|
73 |
+
'''
|
74 |
|
75 |
+
# -----------------------
|
76 |
+
# Text Generation Setup (Chat)
|
77 |
+
# -----------------------
|
78 |
+
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
80 |
+
model = AutoModelForCausalLM.from_pretrained(
|
81 |
+
model_id,
|
82 |
+
device_map="auto",
|
83 |
+
torch_dtype=torch.bfloat16,
|
84 |
+
)
|
85 |
+
model.eval()
|
86 |
+
|
87 |
+
# -----------------------
|
88 |
+
# TTS Setup
|
89 |
+
# -----------------------
|
90 |
+
TTS_VOICES = [
|
91 |
+
"en-US-JennyNeural",
|
92 |
+
"en-US-GuyNeural",
|
93 |
+
]
|
94 |
+
|
95 |
+
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
96 |
+
"""Convert text to speech using Edge TTS and save as MP3"""
|
97 |
+
communicate = edge_tts.Communicate(text, voice)
|
98 |
+
await communicate.save(output_file)
|
99 |
+
return output_file
|
100 |
+
|
101 |
+
# -----------------------
|
102 |
+
# Utility: Clean Chat History
|
103 |
+
# -----------------------
|
104 |
+
def clean_chat_history(chat_history):
|
105 |
+
"""
|
106 |
+
Filter out any chat entries whose "content" is not a string.
|
107 |
+
"""
|
108 |
+
cleaned = []
|
109 |
+
for msg in chat_history:
|
110 |
+
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
111 |
+
cleaned.append(msg)
|
112 |
+
return cleaned
|
113 |
+
|
114 |
+
# -----------------------
|
115 |
+
# Qwen2 VL OCR Setup
|
116 |
+
# -----------------------
|
117 |
+
OCR_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct"
|
118 |
+
processor = AutoProcessor.from_pretrained(OCR_MODEL_ID, trust_remote_code=True)
|
119 |
+
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
120 |
+
OCR_MODEL_ID,
|
121 |
+
trust_remote_code=True,
|
122 |
+
torch_dtype=torch.float16
|
123 |
+
).to("cuda").eval()
|
124 |
+
|
125 |
+
# -----------------------
|
126 |
+
# Stable Diffusion Image Generation Setup (LoRA)
|
127 |
+
# -----------------------
|
128 |
+
MAX_SEED = np.iinfo(np.int32).max
|
129 |
+
USE_TORCH_COMPILE = False
|
130 |
+
ENABLE_CPU_OFFLOAD = False
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
if torch.cuda.is_available():
|
133 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
134 |
+
"SG161222/RealVisXL_V4.0_Lightning",
|
135 |
+
torch_dtype=torch.float16,
|
136 |
+
use_safetensors=True,
|
137 |
+
)
|
138 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
139 |
+
|
140 |
+
# LoRA options with one example for each.
|
141 |
+
LORA_OPTIONS = {
|
142 |
+
"Realism": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
|
143 |
+
"Pixar": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
|
144 |
+
"Photoshoot": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
|
145 |
+
"Clothing": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
|
146 |
+
"Interior": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
|
147 |
+
"Fashion": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
|
148 |
+
"Minimalistic": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
|
149 |
+
"Modern": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
|
150 |
+
"Animaliea": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
|
151 |
+
"Wallpaper": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
|
152 |
+
"Cars": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
|
153 |
+
"PencilArt": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
|
154 |
+
"ArtMinimalistic": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
|
155 |
+
}
|
156 |
|
157 |
+
# Load all LoRA weights
|
158 |
+
for model_name, weight_name, adapter_name in LORA_OPTIONS.values():
|
159 |
+
pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
|
160 |
+
pipe.to("cuda")
|
161 |
+
else:
|
162 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
163 |
+
"SG161222/RealVisXL_V4.0_Lightning",
|
164 |
+
torch_dtype=torch.float32,
|
165 |
+
use_safetensors=True,
|
166 |
+
).to(device)
|
167 |
|
168 |
def save_image(img: Image.Image) -> str:
|
169 |
+
"""Save a PIL image with a unique filename and return the path."""
|
170 |
unique_name = str(uuid.uuid4()) + ".png"
|
171 |
img.save(unique_name)
|
172 |
return unique_name
|
|
|
176 |
seed = random.randint(0, MAX_SEED)
|
177 |
return seed
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
@spaces.GPU(duration=180, enable_queue=True)
|
180 |
+
def generate_image(prompt: str, negative_prompt: str, seed: int, width: int, height: int, guidance_scale: float, randomize_seed: bool, lora_model: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
182 |
+
effective_negative_prompt = negative_prompt # Use provided negative prompt if any
|
|
|
|
|
|
|
183 |
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
|
184 |
+
pipe.set_adapters(adapter_name)
|
185 |
+
outputs = pipe(
|
186 |
+
prompt=prompt,
|
187 |
+
negative_prompt=effective_negative_prompt,
|
188 |
+
width=width,
|
189 |
+
height=height,
|
190 |
+
guidance_scale=guidance_scale,
|
191 |
+
num_inference_steps=28,
|
192 |
+
num_images_per_prompt=1,
|
193 |
+
cross_attention_kwargs={"scale": 0.65},
|
194 |
+
output_type="pil",
|
|
|
|
|
195 |
)
|
196 |
+
images = outputs.images
|
197 |
+
image_paths = [save_image(img) for img in images]
|
198 |
return image_paths, seed
|
199 |
|
200 |
+
# -----------------------
|
201 |
+
# Chat Generation Function (Text-only)
|
202 |
+
# -----------------------
|
203 |
+
def generate_chat(input_text: str, chat_history: list, max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
|
204 |
+
conversation = clean_chat_history(chat_history)
|
205 |
+
conversation.append({"role": "user", "content": input_text})
|
206 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
208 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
209 |
input_ids = input_ids.to(model.device)
|
210 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
211 |
+
generation_kwargs = {
|
212 |
+
"input_ids": input_ids,
|
213 |
+
"streamer": streamer,
|
214 |
+
"max_new_tokens": max_new_tokens,
|
215 |
+
"do_sample": True,
|
216 |
+
"top_p": top_p,
|
217 |
+
"top_k": top_k,
|
218 |
+
"temperature": temperature,
|
219 |
+
"num_beams": 1,
|
220 |
+
"repetition_penalty": repetition_penalty,
|
221 |
+
}
|
222 |
+
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
223 |
+
t.start()
|
224 |
+
outputs = []
|
225 |
+
for new_text in streamer:
|
226 |
+
outputs.append(new_text)
|
227 |
+
final_response = "".join(outputs)
|
228 |
+
chat_history.append({"role": "assistant", "content": final_response})
|
229 |
+
return chat_history
|
230 |
+
|
231 |
+
# -----------------------
|
232 |
+
# Qwen2 VL OCR Function (Multimodal)
|
233 |
+
# -----------------------
|
234 |
+
def generate_ocr(text: str, files, max_new_tokens: int):
|
235 |
+
if files:
|
236 |
+
if isinstance(files, list) and len(files) > 1:
|
237 |
+
images = [load_image(image) for image in files]
|
238 |
+
elif isinstance(files, list) and len(files) == 1:
|
239 |
+
images = [load_image(files[0])]
|
240 |
+
else:
|
241 |
+
images = [load_image(files)]
|
242 |
+
messages = [{
|
243 |
+
"role": "user",
|
244 |
+
"content": [*([{"type": "image", "image": image} for image in images]),
|
245 |
+
{"type": "text", "text": text}]
|
246 |
+
}]
|
247 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
248 |
+
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
249 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
250 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
251 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
252 |
+
thread.start()
|
253 |
+
buffer = ""
|
254 |
+
for new_text in streamer:
|
255 |
+
buffer += new_text
|
256 |
+
return buffer
|
257 |
+
else:
|
258 |
+
return "No images provided."
|
259 |
+
|
260 |
+
# -----------------------
|
261 |
+
# Text-to-Speech Function
|
262 |
+
# -----------------------
|
263 |
+
def generate_tts(text: str, voice: str):
|
264 |
+
output_file = asyncio.run(text_to_speech(text, voice))
|
265 |
+
return output_file
|
266 |
|
267 |
+
# -----------------------
|
268 |
+
# Gradio Interface with Tabs
|
269 |
+
# -----------------------
|
270 |
+
with gr.Blocks(css=css, title="Gen Vision") as demo:
|
271 |
+
gr.Markdown(DESCRIPTION)
|
272 |
|
273 |
+
with gr.Tab("Chat Interface"):
|
|
|
|
|
|
|
|
|
274 |
with gr.Row():
|
275 |
+
chat_history = gr.Chatbot(label="Chat History")
|
|
|
|
|
276 |
with gr.Row():
|
277 |
+
chat_input = gr.Textbox(placeholder="Enter your message", label="Your Message")
|
|
|
278 |
with gr.Row():
|
279 |
+
max_new_tokens_slider = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
280 |
+
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
281 |
with gr.Row():
|
282 |
+
top_p_slider = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
283 |
+
top_k_slider = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
284 |
+
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
285 |
+
send_btn = gr.Button("Send")
|
286 |
+
send_btn.click(
|
287 |
+
fn=generate_chat,
|
288 |
+
inputs=[chat_input, chat_history, max_new_tokens_slider, temperature_slider, top_p_slider, top_k_slider, repetition_penalty_slider],
|
289 |
+
outputs=chat_history,
|
|
|
|
|
290 |
)
|
291 |
|
292 |
+
with gr.Tab("Image Generation"):
|
293 |
+
image_prompt = gr.Textbox(label="Prompt", placeholder="Enter image prompt")
|
294 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt")
|
295 |
+
seed_input = gr.Number(label="Seed", value=0)
|
296 |
+
width_slider = gr.Slider(label="Width", minimum=256, maximum=2048, step=64, value=1024)
|
297 |
+
height_slider = gr.Slider(label="Height", minimum=256, maximum=2048, step=64, value=1024)
|
298 |
+
guidance_scale_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=3.0)
|
299 |
+
randomize_checkbox = gr.Checkbox(label="Randomize Seed", value=True)
|
300 |
+
lora_dropdown = gr.Dropdown(label="LoRA Style", choices=list(LORA_OPTIONS.keys()), value="Realism")
|
301 |
+
generate_img_btn = gr.Button("Generate Image")
|
302 |
+
img_output = gr.Image(label="Generated Image")
|
303 |
+
seed_output = gr.Number(label="Used Seed")
|
304 |
+
generate_img_btn.click(
|
305 |
+
fn=generate_image,
|
306 |
+
inputs=[image_prompt, negative_prompt, seed_input, width_slider, height_slider, guidance_scale_slider, randomize_checkbox, lora_dropdown],
|
307 |
+
outputs=[img_output, seed_output],
|
308 |
)
|
309 |
|
310 |
+
with gr.Tab("Qwen 2 VL OCR"):
|
311 |
+
ocr_text = gr.Textbox(label="Text Prompt", placeholder="Enter prompt for OCR")
|
312 |
+
file_input = gr.File(label="Upload Images", file_count="multiple")
|
313 |
+
ocr_max_new_tokens = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
314 |
+
ocr_btn = gr.Button("Run OCR")
|
315 |
+
ocr_output = gr.Textbox(label="OCR Output")
|
316 |
+
ocr_btn.click(
|
317 |
+
fn=generate_ocr,
|
318 |
+
inputs=[ocr_text, file_input, ocr_max_new_tokens],
|
319 |
+
outputs=ocr_output,
|
|
|
|
|
|
|
|
|
320 |
)
|
321 |
|
322 |
+
with gr.Tab("Text-to-Speech"):
|
323 |
+
tts_text = gr.Textbox(label="Text", placeholder="Enter text for TTS")
|
324 |
+
voice_dropdown = gr.Dropdown(label="Voice", choices=TTS_VOICES, value=TTS_VOICES[0])
|
325 |
+
tts_btn = gr.Button("Generate Audio")
|
326 |
+
tts_audio = gr.Audio(label="Audio Output", type="filepath")
|
327 |
+
tts_btn.click(
|
328 |
+
fn=generate_tts,
|
329 |
+
inputs=[tts_text, voice_dropdown],
|
330 |
+
outputs=tts_audio,
|
331 |
+
)
|
332 |
|
333 |
+
demo.queue(max_size=20).launch(share=True)
|
|