Spaces:
Running
on
Zero
Running
on
Zero
Delete controlnet_flux.py
Browse files- controlnet_flux.py +0 -418
controlnet_flux.py
DELETED
@@ -1,418 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
|
7 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
-
from diffusers.loaders import PeftAdapterMixin
|
9 |
-
from diffusers.models.modeling_utils import ModelMixin
|
10 |
-
from diffusers.models.attention_processor import AttentionProcessor
|
11 |
-
from diffusers.utils import (
|
12 |
-
USE_PEFT_BACKEND,
|
13 |
-
is_torch_version,
|
14 |
-
logging,
|
15 |
-
scale_lora_layers,
|
16 |
-
unscale_lora_layers,
|
17 |
-
)
|
18 |
-
from diffusers.models.controlnet import BaseOutput, zero_module
|
19 |
-
from diffusers.models.embeddings import (
|
20 |
-
CombinedTimestepGuidanceTextProjEmbeddings,
|
21 |
-
CombinedTimestepTextProjEmbeddings,
|
22 |
-
)
|
23 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
24 |
-
from transformer_flux import (
|
25 |
-
EmbedND,
|
26 |
-
FluxSingleTransformerBlock,
|
27 |
-
FluxTransformerBlock,
|
28 |
-
)
|
29 |
-
|
30 |
-
|
31 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
-
|
33 |
-
|
34 |
-
@dataclass
|
35 |
-
class FluxControlNetOutput(BaseOutput):
|
36 |
-
controlnet_block_samples: Tuple[torch.Tensor]
|
37 |
-
controlnet_single_block_samples: Tuple[torch.Tensor]
|
38 |
-
|
39 |
-
|
40 |
-
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
41 |
-
_supports_gradient_checkpointing = True
|
42 |
-
|
43 |
-
@register_to_config
|
44 |
-
def __init__(
|
45 |
-
self,
|
46 |
-
patch_size: int = 1,
|
47 |
-
in_channels: int = 64,
|
48 |
-
num_layers: int = 19,
|
49 |
-
num_single_layers: int = 38,
|
50 |
-
attention_head_dim: int = 128,
|
51 |
-
num_attention_heads: int = 24,
|
52 |
-
joint_attention_dim: int = 4096,
|
53 |
-
pooled_projection_dim: int = 768,
|
54 |
-
guidance_embeds: bool = False,
|
55 |
-
axes_dims_rope: List[int] = [16, 56, 56],
|
56 |
-
extra_condition_channels: int = 1 * 4,
|
57 |
-
):
|
58 |
-
super().__init__()
|
59 |
-
self.out_channels = in_channels
|
60 |
-
self.inner_dim = num_attention_heads * attention_head_dim
|
61 |
-
|
62 |
-
self.pos_embed = EmbedND(
|
63 |
-
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
|
64 |
-
)
|
65 |
-
text_time_guidance_cls = (
|
66 |
-
CombinedTimestepGuidanceTextProjEmbeddings
|
67 |
-
if guidance_embeds
|
68 |
-
else CombinedTimestepTextProjEmbeddings
|
69 |
-
)
|
70 |
-
self.time_text_embed = text_time_guidance_cls(
|
71 |
-
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
72 |
-
)
|
73 |
-
|
74 |
-
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
75 |
-
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
76 |
-
|
77 |
-
self.transformer_blocks = nn.ModuleList(
|
78 |
-
[
|
79 |
-
FluxTransformerBlock(
|
80 |
-
dim=self.inner_dim,
|
81 |
-
num_attention_heads=num_attention_heads,
|
82 |
-
attention_head_dim=attention_head_dim,
|
83 |
-
)
|
84 |
-
for _ in range(num_layers)
|
85 |
-
]
|
86 |
-
)
|
87 |
-
|
88 |
-
self.single_transformer_blocks = nn.ModuleList(
|
89 |
-
[
|
90 |
-
FluxSingleTransformerBlock(
|
91 |
-
dim=self.inner_dim,
|
92 |
-
num_attention_heads=num_attention_heads,
|
93 |
-
attention_head_dim=attention_head_dim,
|
94 |
-
)
|
95 |
-
for _ in range(num_single_layers)
|
96 |
-
]
|
97 |
-
)
|
98 |
-
|
99 |
-
# controlnet_blocks
|
100 |
-
self.controlnet_blocks = nn.ModuleList([])
|
101 |
-
for _ in range(len(self.transformer_blocks)):
|
102 |
-
self.controlnet_blocks.append(
|
103 |
-
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
104 |
-
)
|
105 |
-
|
106 |
-
self.controlnet_single_blocks = nn.ModuleList([])
|
107 |
-
for _ in range(len(self.single_transformer_blocks)):
|
108 |
-
self.controlnet_single_blocks.append(
|
109 |
-
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
110 |
-
)
|
111 |
-
|
112 |
-
self.controlnet_x_embedder = zero_module(
|
113 |
-
torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)
|
114 |
-
)
|
115 |
-
|
116 |
-
self.gradient_checkpointing = False
|
117 |
-
|
118 |
-
@property
|
119 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
120 |
-
def attn_processors(self):
|
121 |
-
r"""
|
122 |
-
Returns:
|
123 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
124 |
-
indexed by its weight name.
|
125 |
-
"""
|
126 |
-
# set recursively
|
127 |
-
processors = {}
|
128 |
-
|
129 |
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
130 |
-
if hasattr(module, "get_processor"):
|
131 |
-
processors[f"{name}.processor"] = module.get_processor()
|
132 |
-
|
133 |
-
for sub_name, child in module.named_children():
|
134 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
135 |
-
|
136 |
-
return processors
|
137 |
-
|
138 |
-
for name, module in self.named_children():
|
139 |
-
fn_recursive_add_processors(name, module, processors)
|
140 |
-
|
141 |
-
return processors
|
142 |
-
|
143 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
144 |
-
def set_attn_processor(self, processor):
|
145 |
-
r"""
|
146 |
-
Sets the attention processor to use to compute attention.
|
147 |
-
|
148 |
-
Parameters:
|
149 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
150 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
151 |
-
for **all** `Attention` layers.
|
152 |
-
|
153 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
154 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
155 |
-
|
156 |
-
"""
|
157 |
-
count = len(self.attn_processors.keys())
|
158 |
-
|
159 |
-
if isinstance(processor, dict) and len(processor) != count:
|
160 |
-
raise ValueError(
|
161 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
162 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
163 |
-
)
|
164 |
-
|
165 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
166 |
-
if hasattr(module, "set_processor"):
|
167 |
-
if not isinstance(processor, dict):
|
168 |
-
module.set_processor(processor)
|
169 |
-
else:
|
170 |
-
module.set_processor(processor.pop(f"{name}.processor"))
|
171 |
-
|
172 |
-
for sub_name, child in module.named_children():
|
173 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
174 |
-
|
175 |
-
for name, module in self.named_children():
|
176 |
-
fn_recursive_attn_processor(name, module, processor)
|
177 |
-
|
178 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
179 |
-
if hasattr(module, "gradient_checkpointing"):
|
180 |
-
module.gradient_checkpointing = value
|
181 |
-
|
182 |
-
@classmethod
|
183 |
-
def from_transformer(
|
184 |
-
cls,
|
185 |
-
transformer,
|
186 |
-
num_layers: int = 4,
|
187 |
-
num_single_layers: int = 10,
|
188 |
-
attention_head_dim: int = 128,
|
189 |
-
num_attention_heads: int = 24,
|
190 |
-
load_weights_from_transformer=True,
|
191 |
-
):
|
192 |
-
config = transformer.config
|
193 |
-
config["num_layers"] = num_layers
|
194 |
-
config["num_single_layers"] = num_single_layers
|
195 |
-
config["attention_head_dim"] = attention_head_dim
|
196 |
-
config["num_attention_heads"] = num_attention_heads
|
197 |
-
|
198 |
-
controlnet = cls(**config)
|
199 |
-
|
200 |
-
if load_weights_from_transformer:
|
201 |
-
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
202 |
-
controlnet.time_text_embed.load_state_dict(
|
203 |
-
transformer.time_text_embed.state_dict()
|
204 |
-
)
|
205 |
-
controlnet.context_embedder.load_state_dict(
|
206 |
-
transformer.context_embedder.state_dict()
|
207 |
-
)
|
208 |
-
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
|
209 |
-
controlnet.transformer_blocks.load_state_dict(
|
210 |
-
transformer.transformer_blocks.state_dict(), strict=False
|
211 |
-
)
|
212 |
-
controlnet.single_transformer_blocks.load_state_dict(
|
213 |
-
transformer.single_transformer_blocks.state_dict(), strict=False
|
214 |
-
)
|
215 |
-
|
216 |
-
controlnet.controlnet_x_embedder = zero_module(
|
217 |
-
controlnet.controlnet_x_embedder
|
218 |
-
)
|
219 |
-
|
220 |
-
return controlnet
|
221 |
-
|
222 |
-
def forward(
|
223 |
-
self,
|
224 |
-
hidden_states: torch.Tensor,
|
225 |
-
controlnet_cond: torch.Tensor,
|
226 |
-
conditioning_scale: float = 1.0,
|
227 |
-
encoder_hidden_states: torch.Tensor = None,
|
228 |
-
pooled_projections: torch.Tensor = None,
|
229 |
-
timestep: torch.LongTensor = None,
|
230 |
-
img_ids: torch.Tensor = None,
|
231 |
-
txt_ids: torch.Tensor = None,
|
232 |
-
guidance: torch.Tensor = None,
|
233 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
234 |
-
return_dict: bool = True,
|
235 |
-
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
236 |
-
"""
|
237 |
-
The [`FluxTransformer2DModel`] forward method.
|
238 |
-
|
239 |
-
Args:
|
240 |
-
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
241 |
-
Input `hidden_states`.
|
242 |
-
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
243 |
-
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
244 |
-
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
245 |
-
from the embeddings of input conditions.
|
246 |
-
timestep ( `torch.LongTensor`):
|
247 |
-
Used to indicate denoising step.
|
248 |
-
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
249 |
-
A list of tensors that if specified are added to the residuals of transformer blocks.
|
250 |
-
joint_attention_kwargs (`dict`, *optional*):
|
251 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
252 |
-
`self.processor` in
|
253 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
254 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
255 |
-
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
256 |
-
tuple.
|
257 |
-
|
258 |
-
Returns:
|
259 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
260 |
-
`tuple` where the first element is the sample tensor.
|
261 |
-
"""
|
262 |
-
if joint_attention_kwargs is not None:
|
263 |
-
joint_attention_kwargs = joint_attention_kwargs.copy()
|
264 |
-
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
265 |
-
else:
|
266 |
-
lora_scale = 1.0
|
267 |
-
|
268 |
-
if USE_PEFT_BACKEND:
|
269 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
270 |
-
scale_lora_layers(self, lora_scale)
|
271 |
-
else:
|
272 |
-
if (
|
273 |
-
joint_attention_kwargs is not None
|
274 |
-
and joint_attention_kwargs.get("scale", None) is not None
|
275 |
-
):
|
276 |
-
logger.warning(
|
277 |
-
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
278 |
-
)
|
279 |
-
hidden_states = self.x_embedder(hidden_states)
|
280 |
-
|
281 |
-
# add condition
|
282 |
-
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
283 |
-
|
284 |
-
timestep = timestep.to(hidden_states.dtype) * 1000
|
285 |
-
if guidance is not None:
|
286 |
-
guidance = guidance.to(hidden_states.dtype) * 1000
|
287 |
-
else:
|
288 |
-
guidance = None
|
289 |
-
temb = (
|
290 |
-
self.time_text_embed(timestep, pooled_projections)
|
291 |
-
if guidance is None
|
292 |
-
else self.time_text_embed(timestep, guidance, pooled_projections)
|
293 |
-
)
|
294 |
-
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
295 |
-
|
296 |
-
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
|
297 |
-
ids = torch.cat((txt_ids, img_ids), dim=1)
|
298 |
-
image_rotary_emb = self.pos_embed(ids)
|
299 |
-
|
300 |
-
block_samples = ()
|
301 |
-
for _, block in enumerate(self.transformer_blocks):
|
302 |
-
if self.training and self.gradient_checkpointing:
|
303 |
-
|
304 |
-
def create_custom_forward(module, return_dict=None):
|
305 |
-
def custom_forward(*inputs):
|
306 |
-
if return_dict is not None:
|
307 |
-
return module(*inputs, return_dict=return_dict)
|
308 |
-
else:
|
309 |
-
return module(*inputs)
|
310 |
-
|
311 |
-
return custom_forward
|
312 |
-
|
313 |
-
ckpt_kwargs: Dict[str, Any] = (
|
314 |
-
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
315 |
-
)
|
316 |
-
(
|
317 |
-
encoder_hidden_states,
|
318 |
-
hidden_states,
|
319 |
-
) = torch.utils.checkpoint.checkpoint(
|
320 |
-
create_custom_forward(block),
|
321 |
-
hidden_states,
|
322 |
-
encoder_hidden_states,
|
323 |
-
temb,
|
324 |
-
image_rotary_emb,
|
325 |
-
**ckpt_kwargs,
|
326 |
-
)
|
327 |
-
|
328 |
-
else:
|
329 |
-
encoder_hidden_states, hidden_states = block(
|
330 |
-
hidden_states=hidden_states,
|
331 |
-
encoder_hidden_states=encoder_hidden_states,
|
332 |
-
temb=temb,
|
333 |
-
image_rotary_emb=image_rotary_emb,
|
334 |
-
)
|
335 |
-
block_samples = block_samples + (hidden_states,)
|
336 |
-
|
337 |
-
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
338 |
-
|
339 |
-
single_block_samples = ()
|
340 |
-
for _, block in enumerate(self.single_transformer_blocks):
|
341 |
-
if self.training and self.gradient_checkpointing:
|
342 |
-
|
343 |
-
def create_custom_forward(module, return_dict=None):
|
344 |
-
def custom_forward(*inputs):
|
345 |
-
if return_dict is not None:
|
346 |
-
return module(*inputs, return_dict=return_dict)
|
347 |
-
else:
|
348 |
-
return module(*inputs)
|
349 |
-
|
350 |
-
return custom_forward
|
351 |
-
|
352 |
-
ckpt_kwargs: Dict[str, Any] = (
|
353 |
-
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
354 |
-
)
|
355 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
356 |
-
create_custom_forward(block),
|
357 |
-
hidden_states,
|
358 |
-
temb,
|
359 |
-
image_rotary_emb,
|
360 |
-
**ckpt_kwargs,
|
361 |
-
)
|
362 |
-
|
363 |
-
else:
|
364 |
-
hidden_states = block(
|
365 |
-
hidden_states=hidden_states,
|
366 |
-
temb=temb,
|
367 |
-
image_rotary_emb=image_rotary_emb,
|
368 |
-
)
|
369 |
-
single_block_samples = single_block_samples + (
|
370 |
-
hidden_states[:, encoder_hidden_states.shape[1] :],
|
371 |
-
)
|
372 |
-
|
373 |
-
# controlnet block
|
374 |
-
controlnet_block_samples = ()
|
375 |
-
for block_sample, controlnet_block in zip(
|
376 |
-
block_samples, self.controlnet_blocks
|
377 |
-
):
|
378 |
-
block_sample = controlnet_block(block_sample)
|
379 |
-
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
380 |
-
|
381 |
-
controlnet_single_block_samples = ()
|
382 |
-
for single_block_sample, controlnet_block in zip(
|
383 |
-
single_block_samples, self.controlnet_single_blocks
|
384 |
-
):
|
385 |
-
single_block_sample = controlnet_block(single_block_sample)
|
386 |
-
controlnet_single_block_samples = controlnet_single_block_samples + (
|
387 |
-
single_block_sample,
|
388 |
-
)
|
389 |
-
|
390 |
-
# scaling
|
391 |
-
controlnet_block_samples = [
|
392 |
-
sample * conditioning_scale for sample in controlnet_block_samples
|
393 |
-
]
|
394 |
-
controlnet_single_block_samples = [
|
395 |
-
sample * conditioning_scale for sample in controlnet_single_block_samples
|
396 |
-
]
|
397 |
-
|
398 |
-
#
|
399 |
-
controlnet_block_samples = (
|
400 |
-
None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
401 |
-
)
|
402 |
-
controlnet_single_block_samples = (
|
403 |
-
None
|
404 |
-
if len(controlnet_single_block_samples) == 0
|
405 |
-
else controlnet_single_block_samples
|
406 |
-
)
|
407 |
-
|
408 |
-
if USE_PEFT_BACKEND:
|
409 |
-
# remove `lora_scale` from each PEFT layer
|
410 |
-
unscale_lora_layers(self, lora_scale)
|
411 |
-
|
412 |
-
if not return_dict:
|
413 |
-
return (controlnet_block_samples, controlnet_single_block_samples)
|
414 |
-
|
415 |
-
return FluxControlNetOutput(
|
416 |
-
controlnet_block_samples=controlnet_block_samples,
|
417 |
-
controlnet_single_block_samples=controlnet_single_block_samples,
|
418 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|