File size: 15,950 Bytes
71b21b4
 
 
 
 
 
 
 
 
 
 
 
54875b8
71b21b4
 
 
 
 
 
 
 
 
 
 
74ba6ce
 
 
 
71b21b4
 
 
 
 
74ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
74ba6ce
71b21b4
 
 
 
 
74ba6ce
 
 
 
 
 
 
 
 
 
3e5ce53
74ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
54875b8
 
71b21b4
54875b8
71b21b4
 
 
 
b71cea0
74ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54875b8
 
 
71b21b4
54875b8
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
74ba6ce
54875b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74ba6ce
 
54875b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
54875b8
74ba6ce
 
71b21b4
74ba6ce
 
71b21b4
3e5ce53
74ba6ce
54875b8
74ba6ce
 
 
 
 
 
 
54875b8
74ba6ce
 
54875b8
 
 
74ba6ce
 
 
54875b8
 
74ba6ce
 
54875b8
 
 
74ba6ce
 
 
 
 
54875b8
 
74ba6ce
54875b8
74ba6ce
54875b8
74ba6ce
 
54875b8
74ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54875b8
74ba6ce
 
 
54875b8
74ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
 
74ba6ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import random
import uuid
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

# ---------------------------
# Global Settings & Utilities
# ---------------------------

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def save_image(img: Image.Image) -> str:
    """Save a PIL image with a unique filename and return the path."""
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    MAX_SEED = np.iinfo(np.int32).max
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def progress_bar_html(label: str) -> str:
    """Returns an HTML snippet for a thin progress bar with a label."""
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

# ---------------------------
# 1. Chat Interface Tab
# ---------------------------
# Uses a text-only model: FastThink-0.5B-Tiny

model_id_text = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id_text)
model = AutoModelForCausalLM.from_pretrained(
    model_id_text,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

def clean_chat_history(chat_history):
    """
    Filter out any chat entries whose "content" is not a string.
    """
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

@spaces.GPU
def chat_generate(input_text: str, chat_history: list, max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
    """
    Chat generation using a text-only model.
    """
    # Prepare conversation by cleaning history and appending the new user message.
    conversation = clean_chat_history(chat_history)
    conversation.append({"role": "user", "content": input_text})
    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
    input_ids = input_ids.to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        "input_ids": input_ids,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "top_p": top_p,
        "top_k": top_k,
        "temperature": temperature,
        "num_beams": 1,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    outputs = []
    # Collect the generated text from the streamer.
    for new_text in streamer:
        outputs.append(new_text)
    final_response = "".join(outputs)
    # Append assistant reply to chat history.
    updated_history = conversation + [{"role": "assistant", "content": final_response}]
    return final_response, updated_history

# ---------------------------
# 2. Qwen 2 VL OCR Tab
# ---------------------------
# Uses Qwen2VL OCR model for multimodal input (text + image)

MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_QWEN,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

@spaces.GPU
def generate_qwen_ocr(input_text: str, image):
    """
    Uses the Qwen2VL OCR model to process an image along with text.
    """
    if image is None:
        return "No image provided."
    # Build message with system and user content.
    messages = [
        {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
        {"role": "user", "content": [{"type": "text", "text": input_text}, {"type": "image", "image": image}]}
    ]
    # Apply chat template.
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to("cuda")
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": DEFAULT_MAX_NEW_TOKENS,
        "do_sample": True,
        "temperature": 0.6,
        "top_p": 0.9,
        "top_k": 50,
        "repetition_penalty": 1.2,
    }
    thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
    thread.start()
    outputs = []
    for new_text in streamer:
        outputs.append(new_text.replace("<|im_end|>", ""))
    final_response = "".join(outputs)
    return final_response

# ---------------------------
# 3. Image Gen LoRA Tab
# ---------------------------
# Uses the SDXL pipeline with LoRA options.

MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")  # set your SDXL model path via env variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

sd_pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID_SD,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
    sd_pipe.text_encoder = sd_pipe.text_encoder.half()
if USE_TORCH_COMPILE:
    sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
    sd_pipe.enable_model_cpu_offload()

# LoRA options dictionary.
LORA_OPTIONS = {
    "Realism (face/character)πŸ‘¦πŸ»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
    "Pixar (art/toons)πŸ™€": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
    "Photoshoot (camera/film)πŸ“Έ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
    "Clothing (hoodies/pant/shirts)πŸ‘”": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
    "Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
    "Fashion Product (wearing/usable)πŸ‘œ": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
    "Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
    "Modern Clothing (trend/new)πŸ‘•": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
    "Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
    "Liquid Wallpaper (minimal/illustration)πŸ–ΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
    "Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
    "Pencil Art (characteristic/creative)✏️": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
    "Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}

# Style options.
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str, negative: str = ""):
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]
    return p.replace("{prompt}", positive), n + (negative if negative else "")

@spaces.GPU
def generate_image_lora(prompt: str, negative_prompt: str, use_negative_prompt: bool, seed: int, width: int, height: int, guidance_scale: float, randomize_seed: bool, style_name: str, lora_model: str):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
    if not use_negative_prompt:
        effective_negative_prompt = ""
    # Set the desired LoRA adapter.
    model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
    sd_pipe.set_adapters(adapter_name)
    # Generate image(s)
    options = {
        "prompt": [positive_prompt],
        "negative_prompt": [effective_negative_prompt],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": 20,
        "num_images_per_prompt": 1,
        "cross_attention_kwargs": {"scale": 0.65},
        "output_type": "pil",
    }
    outputs = sd_pipe(**options)
    images = outputs.images
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

# ---------------------------
# Build Gradio Interface with Three Tabs
# ---------------------------
with gr.Blocks(css=".gradio-container {max-width: 900px; margin: auto;}") as demo:
    gr.Markdown("## Multi-Functional Demo: Chat Interface | Qwen 2 VL OCR | Image Gen LoRA")

    with gr.Tabs():
        # Tab 1: Chat Interface
        with gr.Tab("Chat Interface"):
            chat_output = gr.Chatbot(label="Chat Conversation")
            with gr.Row():
                chat_inp = gr.Textbox(label="Enter your message", placeholder="Type your message here...", lines=2)
                send_btn = gr.Button("Send")
            with gr.Row():
                max_tokens_slider = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p_slider = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k_slider = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                rep_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
            state = gr.State([])

            def chat_step(user_message, history, max_tokens, temp, top_p, top_k, rep_penalty):
                response, updated_history = chat_generate(user_message, history, max_tokens, temp, top_p, top_k, rep_penalty)
                return updated_history, updated_history

            send_btn.click(chat_step, 
                           inputs=[chat_inp, state, max_tokens_slider, temperature_slider, top_p_slider, top_k_slider, rep_penalty_slider],
                           outputs=[chat_output, state])
            chat_inp.submit(chat_step, 
                            inputs=[chat_inp, state, max_tokens_slider, temperature_slider, top_p_slider, top_k_slider, rep_penalty_slider],
                            outputs=[chat_output, state])
        
        # Tab 2: Qwen 2 VL OCR
        with gr.Tab("Qwen 2 VL OCR"):
            gr.Markdown("Upload an image and enter a prompt. The model will return OCR/extraction or descriptive text from the image.")
            ocr_inp = gr.Textbox(label="Enter prompt", placeholder="Describe what you want to extract...", lines=2)
            image_inp = gr.Image(label="Upload Image", type="pil")
            ocr_output = gr.Textbox(label="Output", placeholder="Model output will appear here...", lines=5)
            ocr_btn = gr.Button("Run Qwen 2 VL OCR")
            ocr_btn.click(generate_qwen_ocr, inputs=[ocr_inp, image_inp], outputs=ocr_output)

        # Tab 3: Image Gen LoRA
        with gr.Tab("Image Gen LoRA"):
            gr.Markdown("Generate images with SDXL using various LoRA models and quality styles.")
            with gr.Row():
                prompt_img = gr.Textbox(label="Prompt", placeholder="Enter prompt for image generation...", lines=2)
                negative_prompt_img = gr.Textbox(label="Negative Prompt", placeholder="(optional) negative prompt", lines=2)
            use_neg_checkbox = gr.Checkbox(label="Use Negative Prompt", value=True)
            with gr.Row():
                seed_slider = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=0)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize Seed", value=True)
            with gr.Row():
                width_slider = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024)
                height_slider = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024)
            guidance_slider = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0)
            style_radio = gr.Radio(label="Quality Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
            lora_dropdown = gr.Dropdown(label="LoRA Selection", choices=list(LORA_OPTIONS.keys()), value="Realism (face/character)πŸ‘¦πŸ»")
            img_output = gr.Gallery(label="Generated Images", columns=1, preview=True)
            seed_output = gr.Number(label="Used Seed")
            run_img_btn = gr.Button("Generate Image")
            run_img_btn.click(generate_image_lora, 
                              inputs=[prompt_img, negative_prompt_img, use_neg_checkbox, seed_slider, width_slider, height_slider, guidance_slider, randomize_seed_checkbox, style_radio, lora_dropdown],
                              outputs=[img_output, seed_output])
    
    gr.Markdown("### Adjustments")
    gr.Markdown("Each tab has been implemented separately. Feel free to adjust parameters and layout as needed in each tab.")

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)