Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,950 Bytes
71b21b4 54875b8 71b21b4 74ba6ce 71b21b4 74ba6ce 71b21b4 74ba6ce 71b21b4 74ba6ce 3e5ce53 74ba6ce 71b21b4 54875b8 71b21b4 54875b8 71b21b4 b71cea0 74ba6ce 54875b8 71b21b4 54875b8 71b21b4 74ba6ce 54875b8 74ba6ce 54875b8 71b21b4 54875b8 74ba6ce 71b21b4 74ba6ce 71b21b4 3e5ce53 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 54875b8 74ba6ce 71b21b4 74ba6ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import os
import random
import uuid
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
# ---------------------------
# Global Settings & Utilities
# ---------------------------
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return the path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
MAX_SEED = np.iinfo(np.int32).max
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def progress_bar_html(label: str) -> str:
"""Returns an HTML snippet for a thin progress bar with a label."""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# ---------------------------
# 1. Chat Interface Tab
# ---------------------------
# Uses a text-only model: FastThink-0.5B-Tiny
model_id_text = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id_text)
model = AutoModelForCausalLM.from_pretrained(
model_id_text,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
def clean_chat_history(chat_history):
"""
Filter out any chat entries whose "content" is not a string.
"""
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
@spaces.GPU
def chat_generate(input_text: str, chat_history: list, max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
"""
Chat generation using a text-only model.
"""
# Prepare conversation by cleaning history and appending the new user message.
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": input_text})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
outputs = []
# Collect the generated text from the streamer.
for new_text in streamer:
outputs.append(new_text)
final_response = "".join(outputs)
# Append assistant reply to chat history.
updated_history = conversation + [{"role": "assistant", "content": final_response}]
return final_response, updated_history
# ---------------------------
# 2. Qwen 2 VL OCR Tab
# ---------------------------
# Uses Qwen2VL OCR model for multimodal input (text + image)
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_QWEN,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
@spaces.GPU
def generate_qwen_ocr(input_text: str, image):
"""
Uses the Qwen2VL OCR model to process an image along with text.
"""
if image is None:
return "No image provided."
# Build message with system and user content.
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": input_text}, {"type": "image", "image": image}]}
]
# Apply chat template.
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": DEFAULT_MAX_NEW_TOKENS,
"do_sample": True,
"temperature": 0.6,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1.2,
}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
outputs = []
for new_text in streamer:
outputs.append(new_text.replace("<|im_end|>", ""))
final_response = "".join(outputs)
return final_response
# ---------------------------
# 3. Image Gen LoRA Tab
# ---------------------------
# Uses the SDXL pipeline with LoRA options.
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # set your SDXL model path via env variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID_SD,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
if USE_TORCH_COMPILE:
sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
sd_pipe.enable_model_cpu_offload()
# LoRA options dictionary.
LORA_OPTIONS = {
"Realism (face/character)π¦π»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
"Pixar (art/toons)π": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
"Photoshoot (camera/film)πΈ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
"Clothing (hoodies/pant/shirts)π": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
"Interior Architecture (house/hotel)π ": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1Ξ΄.safetensors", "arch"),
"Fashion Product (wearing/usable)π": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
"Minimalistic Image (minimal/detailed)ποΈ": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
"Modern Clothing (trend/new)π": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
"Animaliea (farm/wild)π«": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
"Liquid Wallpaper (minimal/illustration)πΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
"Canes Cars (realistic/futurecars)π": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
"Pencil Art (characteristic/creative)βοΈ": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
"Art Minimalistic (paint/semireal)π¨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}
# Style options.
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str, negative: str = ""):
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
return p.replace("{prompt}", positive), n + (negative if negative else "")
@spaces.GPU
def generate_image_lora(prompt: str, negative_prompt: str, use_negative_prompt: bool, seed: int, width: int, height: int, guidance_scale: float, randomize_seed: bool, style_name: str, lora_model: str):
seed = int(randomize_seed_fn(seed, randomize_seed))
positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
if not use_negative_prompt:
effective_negative_prompt = ""
# Set the desired LoRA adapter.
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
sd_pipe.set_adapters(adapter_name)
# Generate image(s)
options = {
"prompt": [positive_prompt],
"negative_prompt": [effective_negative_prompt],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": 20,
"num_images_per_prompt": 1,
"cross_attention_kwargs": {"scale": 0.65},
"output_type": "pil",
}
outputs = sd_pipe(**options)
images = outputs.images
image_paths = [save_image(img) for img in images]
return image_paths, seed
# ---------------------------
# Build Gradio Interface with Three Tabs
# ---------------------------
with gr.Blocks(css=".gradio-container {max-width: 900px; margin: auto;}") as demo:
gr.Markdown("## Multi-Functional Demo: Chat Interface | Qwen 2 VL OCR | Image Gen LoRA")
with gr.Tabs():
# Tab 1: Chat Interface
with gr.Tab("Chat Interface"):
chat_output = gr.Chatbot(label="Chat Conversation")
with gr.Row():
chat_inp = gr.Textbox(label="Enter your message", placeholder="Type your message here...", lines=2)
send_btn = gr.Button("Send")
with gr.Row():
max_tokens_slider = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p_slider = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k_slider = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
rep_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
state = gr.State([])
def chat_step(user_message, history, max_tokens, temp, top_p, top_k, rep_penalty):
response, updated_history = chat_generate(user_message, history, max_tokens, temp, top_p, top_k, rep_penalty)
return updated_history, updated_history
send_btn.click(chat_step,
inputs=[chat_inp, state, max_tokens_slider, temperature_slider, top_p_slider, top_k_slider, rep_penalty_slider],
outputs=[chat_output, state])
chat_inp.submit(chat_step,
inputs=[chat_inp, state, max_tokens_slider, temperature_slider, top_p_slider, top_k_slider, rep_penalty_slider],
outputs=[chat_output, state])
# Tab 2: Qwen 2 VL OCR
with gr.Tab("Qwen 2 VL OCR"):
gr.Markdown("Upload an image and enter a prompt. The model will return OCR/extraction or descriptive text from the image.")
ocr_inp = gr.Textbox(label="Enter prompt", placeholder="Describe what you want to extract...", lines=2)
image_inp = gr.Image(label="Upload Image", type="pil")
ocr_output = gr.Textbox(label="Output", placeholder="Model output will appear here...", lines=5)
ocr_btn = gr.Button("Run Qwen 2 VL OCR")
ocr_btn.click(generate_qwen_ocr, inputs=[ocr_inp, image_inp], outputs=ocr_output)
# Tab 3: Image Gen LoRA
with gr.Tab("Image Gen LoRA"):
gr.Markdown("Generate images with SDXL using various LoRA models and quality styles.")
with gr.Row():
prompt_img = gr.Textbox(label="Prompt", placeholder="Enter prompt for image generation...", lines=2)
negative_prompt_img = gr.Textbox(label="Negative Prompt", placeholder="(optional) negative prompt", lines=2)
use_neg_checkbox = gr.Checkbox(label="Use Negative Prompt", value=True)
with gr.Row():
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=0)
randomize_seed_checkbox = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width_slider = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024)
height_slider = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0)
style_radio = gr.Radio(label="Quality Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
lora_dropdown = gr.Dropdown(label="LoRA Selection", choices=list(LORA_OPTIONS.keys()), value="Realism (face/character)π¦π»")
img_output = gr.Gallery(label="Generated Images", columns=1, preview=True)
seed_output = gr.Number(label="Used Seed")
run_img_btn = gr.Button("Generate Image")
run_img_btn.click(generate_image_lora,
inputs=[prompt_img, negative_prompt_img, use_neg_checkbox, seed_slider, width_slider, height_slider, guidance_slider, randomize_seed_checkbox, style_radio, lora_dropdown],
outputs=[img_output, seed_output])
gr.Markdown("### Adjustments")
gr.Markdown("Each tab has been implemented separately. Feel free to adjust parameters and layout as needed in each tab.")
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |