File size: 5,772 Bytes
0c1b8f7
b06a87f
0c1b8f7
fca22b9
0c1b8f7
32d8e74
b06a87f
fca22b9
26f7b76
fca22b9
26f7b76
fca22b9
 
34d2094
fca22b9
 
 
 
 
 
 
 
d6b5ac6
34d2094
fca22b9
 
 
 
 
 
0886910
fca22b9
26f7b76
 
 
 
 
 
 
 
 
 
 
 
 
3a6718d
d7f29b6
7f471f2
b06a87f
 
 
 
83a0174
26f7b76
83a0174
48a6837
26f7b76
 
fca22b9
a592e13
26f7b76
34d2094
26f7b76
 
 
 
 
 
 
 
 
 
 
 
 
d6b5ac6
26f7b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9ba29
fca22b9
0ba4242
fca22b9
26f7b76
ea9ba29
26f7b76
ea9ba29
 
0ba4242
 
26f7b76
4bcff80
26f7b76
 
0ba4242
fca22b9
26f7b76
0ba4242
fca22b9
 
 
0ba4242
47473ae
0c1b8f7
2aadb64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
from threading import Thread
import gradio as gr
import spaces
import torch
import edge_tts
import asyncio
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from transformers.image_utils import load_image
from huggingface_hub import InferenceClient
import time

# Load text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

# Load multimodal (OCR) model and processor
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

TTS_VOICES = [
    "en-US-JennyNeural",  # @tts1
    "en-US-GuyNeural",    # @tts2
]

def image_gen(prompt):
    """Generate image using API"""
    try:
        client = InferenceClient("prithivMLmods/STABLE-HAMSTER")
        return client.text_to_image(prompt)
    except:
        client_flux = InferenceClient("black-forest-labs/FLUX.1-schnell")
        return client_flux.text_to_image(prompt)

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """Convert text to speech using Edge TTS and save as MP3"""
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    return [msg for msg in chat_history if isinstance(msg, dict) and isinstance(msg.get("content"), str)]

@spaces.GPU
def generate(input_dict: dict, chat_history: list[dict], max_new_tokens=1024, temperature=0.6, top_p=0.9, top_k=50, repetition_penalty=1.2):
    """Generates chatbot responses with multimodal input, TTS, and image generation."""
    text = input_dict["text"]
    files = input_dict.get("files", [])
    images = [load_image(file) for file in files] if files else []
    
    if text.startswith("@tts"):
        voice_index = next((i for i in range(1, 3) if text.startswith(f"@tts{i}")), None)
        if voice_index:
            voice = TTS_VOICES[voice_index - 1]
            text = text.replace(f"@tts{voice_index}", "").strip()
            conversation = [{"role": "user", "content": text}]
        else:
            voice = None
    elif text.startswith("@image"):
        query = text.replace("@image", "").strip()
        yield "Generating Image, Please wait..."
        image = image_gen(query)
        yield gr.Image(image)
    else:
        conversation = clean_chat_history(chat_history) + [{"role": "user", "content": text}]
        if images:
            messages = [{
                "role": "user",
                "content": [
                    *[{"type": "image", "image": img} for img in images],
                    {"type": "text", "text": text},
                ]
            }]
            prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
            streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
            thread = Thread(target=model_m.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens})
            thread.start()
            buffer = ""
            for new_text in streamer:
                buffer += new_text.replace("<|im_end|>", "")
                yield buffer
        else:
            input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
            streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
            thread = Thread(target=model.generate, kwargs={
                "input_ids": input_ids,
                "streamer": streamer,
                "max_new_tokens": max_new_tokens,
                "do_sample": True,
                "top_p": top_p,
                "top_k": top_k,
                "temperature": temperature,
                "num_beams": 1,
                "repetition_penalty": repetition_penalty,
            })
            thread.start()
            response = "".join([new_text for new_text in streamer])
            yield response
            if voice:
                output_file = asyncio.run(text_to_speech(response, voice))
                yield gr.Audio(output_file, autoplay=True)

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=2048, step=1, value=1024),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        ["@tts1 Who is Nikola Tesla?"],
        [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
        ["@image futuristic city at sunset"],
        ["A train travels 60 kilometers per hour. How far will it travel in 5 hours?"],
    ],
    cache_examples=False,
    description="# QwQ Edge 💬",
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)