Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,911 Bytes
ed275c9 5d63d59 ed275c9 5d63d59 fc95e60 6401487 92e002a 6401487 92e002a ed275c9 92e002a 7342b9f 92e002a 7342b9f c8cd2f3 7342b9f 6401487 92e002a 6401487 92e002a 6401487 92e002a e440671 3f6a788 91cda81 ed275c9 92e002a 3f6a788 92e002a 6401487 ed275c9 9522057 3f6a788 92e002a 6401487 92e002a 6401487 92e002a 6401487 92e002a 3f6a788 92e002a 64f9a07 92e002a 64f9a07 239e8eb 92e002a 64f9a07 92e002a 64f9a07 92e002a fc95e60 3f6a788 fc95e60 92e002a 5d63d59 fc95e60 3f6a788 5d63d59 3f6a788 92e002a 3f6a788 92e002a fc95e60 5633a75 fe53594 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 7342b9f ed275c9 0de5083 5d63d59 ed275c9 92e002a 5d63d59 92e002a 1ed1b2f 47bf42c 64f9a07 6f88271 64f9a07 df7c39c 78742f4 9522057 91cda81 9522057 92e002a 91cda81 7342b9f 6401487 7342b9f 6b97fb9 7342b9f 91cda81 fc95e60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
AutoModelForImageTextToText,
)
from transformers import Qwen2_5_VLForConditionalGeneration
# ---------------------------
# Helper Functions
# ---------------------------
def progress_bar_html(label: str, primary_color: str = "#FF69B4", secondary_color: str = "#FFB6C1") -> str:
"""
Returns an HTML snippet for a thin animated progress bar with a label.
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples a video file by extracting 10 evenly spaced frames.
Returns a list of tuples (PIL.Image, timestamp).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Determine 10 evenly spaced frame indices.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Model and Processor Setup
# Qwen2VL OCR (default branch)
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" #[or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# Aya-Vision branch (for @aya-vision and @video-infer)
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
aya_model = AutoModelForImageTextToText.from_pretrained(
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
)
# RolmOCR branch (@RolmOCR)
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
ROLMOCR_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Main Inference Function
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
# ---------------------------
# Aya-Vision Video Inference (@video-infer)
# ---------------------------
if text.lower().startswith("@video-infer"):
prompt = text[len("@video-infer"):].strip()
if not files:
yield "Error: Please provide a video for the @video-infer feature."
return
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
yield "Error: Could not extract frames from the video."
return
# Build the message with the text prompt followed by each frame (with timestamp label).
content_list = [{"type": "text", "text": prompt}]
for frame, timestamp in frames:
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
content_list.append({"type": "image", "image": frame})
messages = [{"role": "user", "content": content_list}]
inputs = aya_processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(aya_model.device)
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
temperature=0.3
)
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Aya-Vision-8b")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Aya-Vision Image Inference (@aya-vision)
if text.lower().startswith("@aya-vision"):
text_prompt = text[len("@aya-vision"):].strip()
if not files:
yield "Error: Please provide an image for the @aya-vision feature."
return
image = load_image(files[0])
yield progress_bar_html("Processing with Aya-Vision-8b")
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_prompt},
],
}]
inputs = aya_processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(aya_model.device)
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
temperature=0.3
)
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# RolmOCR Inference (@RolmOCR)
if text.lower().startswith("@rolmocr"):
# Remove the tag from the query.
text_prompt = text[len("@rolmocr"):].strip()
# Check if a video is provided for inference.
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")):
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
yield "Error: Could not extract frames from the video."
return
# Build the message: prompt followed by each frame with its timestamp.
content_list = [{"type": "text", "text": text_prompt}]
for image, timestamp in frames:
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
content_list.append({"type": "image", "image": image})
messages = [{"role": "user", "content": content_list}]
# For video, extract images only.
video_images = [image for image, _ in frames]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
else:
# Assume image(s) or text query.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text_prompt == "" and not images:
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text_prompt},
],
}]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
# Use a different color scheme for RolmOCR (purple-themed).
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)", primary_color="#4B0082", secondary_color="#9370DB")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Default Inference: Qwen2VL OCR
# Process files: support multiple images.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
yield "Error: Please input a text query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = qwen_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface
examples = [
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
[{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}],
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
[{"text": "@video-infer Explain what is happening in this video briefly ?", "files": ["examples/oreo.mp4"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
[{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}],
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Multimodal OCR `@RolmOCR, @aya-vision for image, @video-infer for video`**",
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Use tag @RolmOCR @aya-vision for Image, @video-infer for video, or leave blank for default Qwen2VL OCR"
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
demo.launch(debug=True) |