princeml commited on
Commit
a389c72
·
1 Parent(s): 46f815c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -102
README.md CHANGED
@@ -1,102 +1,8 @@
1
- # Men-wome-detection-using-yolov8
2
-
3
- ![pexels-kaique-rocha-109919](https://user-images.githubusercontent.com/85225054/218306896-3ce9d1a1-96b0-42f7-8725-c3cbbab39280.jpg)
4
-
5
- #### This guide will provide instructions on how to convert OIDv4 data into the YOLO format for use with YOLOv8 object detection algorithms.
6
-
7
- #### Getting Started
8
-
9
- ``` git clone https://github.com/prince0310/Men-wome-detection-using-yolov8-.git ```
10
-
11
-
12
- <details open>
13
- <summary>Dataset</summary>
14
- <br>
15
- For training custom data set on yolo model you need to have data set arrangement in yolo format. which includes Images and Their annotation file.<br>
16
-
17
- ##### clone the repository and run donload the data set and their annotation file
18
-
19
- ``` git clone https://github.com/prince0310/OIDv4_ToolKit.git ```
20
-
21
- ##### Implement ```convert annotation.ipynb``` notebook <br>
22
-
23
- it will create data in below format
24
-
25
- ```
26
- Custom dataset
27
- |
28
- |─── train
29
- | |
30
- | └───Images --- 0fdea8a716155a8e.jpg
31
- | └───Labels --- 0fdea8a716155a8e.txt
32
- |
33
- └─── test
34
- | └───Images --- 0b6f22bf3b586889.jpg
35
- | └───Labels --- 0b6f22bf3b586889.txt
36
- |
37
- └─── validation
38
- | └───Images --- 0fdea8a716155a8e.jpg
39
- | └───Labels --- 0fdea8a716155a8e.txt
40
- |
41
- └─── data.yaml
42
- ```
43
-
44
- </details>
45
-
46
-
47
- <details open>
48
- <summary>Install</summary>
49
-
50
- Pip install the ultralytics package including
51
- all [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a
52
- [**3.10>=Python>=3.7**](https://www.python.org/) environment, including
53
- [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
54
-
55
- ```bash
56
- pip install ultralytics
57
- ```
58
- </details>
59
-
60
- <details open>
61
- <summary>Train</summary>
62
- <br>
63
-
64
- Python
65
-
66
- ```bash
67
- from ultralytics import YOLO
68
-
69
- # Train
70
- model = YOLO("yolov8n.pt")
71
-
72
- results = model.train(data="data.yaml", epochs=200, workers=1, batch=8,imgsz=640) # train the model
73
- ```
74
- Cli
75
-
76
- ```bash
77
- yolo detect train data=data.yaml model=yolov8n.pt epochs=200 imgsz=640
78
- ```
79
- </details>
80
-
81
- <details open>
82
- <summary>Detect</summary>
83
- <br>
84
-
85
- Python
86
-
87
- ```bash
88
- from ultralytics import YOLO
89
-
90
- # Load a model
91
- model = YOLO("best.pt") # load a custom model
92
-
93
- # Predict with the model
94
- results = model("image.jpg", save = True) # predict on an image
95
- ```
96
- Cli
97
-
98
- ```bash
99
- yolo detect predict model=path/to/best.pt source="images.jpg" # predict with custom model
100
- ```
101
-
102
- </details>
 
1
+ title: 📷 Webcam Object Recognition Yolo Coco 🔍 Live Gradio
2
+ emoji: 📷Live
3
+ colorFrom: purple
4
+ colorTo: blue
5
+ sdk: gradio
6
+ sdk_version: 3.16.2
7
+ app_file: app.py
8
+ pinned: false