|
import os |
|
from PIL import Image |
|
import torch |
|
|
|
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config |
|
from point_e.diffusion.sampler import PointCloudSampler |
|
from point_e.models.download import load_checkpoint |
|
from point_e.models.configs import MODEL_CONFIGS, model_from_config |
|
from point_e.util.plotting import plot_point_cloud |
|
from point_e.util.pc_to_mesh import marching_cubes_mesh |
|
|
|
import skimage.measure |
|
|
|
from pyntcloud import PyntCloud |
|
import matplotlib.colors |
|
import plotly.graph_objs as go |
|
|
|
import trimesh |
|
|
|
import gradio as gr |
|
|
|
|
|
state = "" |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
def set_state(s): |
|
print(s) |
|
global state |
|
state = s |
|
|
|
def get_state(): |
|
return state |
|
|
|
set_state('Creating txt2mesh model...') |
|
t2m_name = 'base40M-textvec' |
|
t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device) |
|
t2m_model.eval() |
|
base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name]) |
|
|
|
set_state('Downloading txt2mesh checkpoint...') |
|
t2m_model.load_state_dict(load_checkpoint(t2m_name, device)) |
|
|
|
|
|
def load_img2mesh_model(model_name): |
|
set_state(f'Creating img2mesh model {model_name}...') |
|
i2m_name = model_name |
|
i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device) |
|
i2m_model.eval() |
|
base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name]) |
|
|
|
set_state(f'Downloading img2mesh checkpoint {model_name}...') |
|
i2m_model.load_state_dict(load_checkpoint(i2m_name, device)) |
|
|
|
return i2m_model, base_diffusion_i2m |
|
|
|
img2mesh_model_name = 'base40M' |
|
i2m_model, base_diffusion_i2m = load_img2mesh_model(img2mesh_model_name) |
|
|
|
|
|
set_state('Creating upsample model...') |
|
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) |
|
upsampler_model.eval() |
|
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) |
|
|
|
set_state('Downloading upsampler checkpoint...') |
|
upsampler_model.load_state_dict(load_checkpoint('upsample', device)) |
|
|
|
set_state('Creating SDF model...') |
|
sdf_name = 'sdf' |
|
sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device) |
|
sdf_model.eval() |
|
|
|
set_state('Loading SDF model...') |
|
sdf_model.load_state_dict(load_checkpoint(sdf_name, device)) |
|
|
|
stable_diffusion = gr.Blocks.load(name="spaces/runwayml/stable-diffusion-v1-5") |
|
|
|
|
|
set_state('') |
|
|
|
def get_sampler(model_name, txt2obj, guidance_scale): |
|
|
|
global img2mesh_model_name |
|
global base_diffusion_i2m |
|
global i2m_model |
|
if model_name != img2mesh_model_name: |
|
img2mesh_model_name = model_name |
|
i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name) |
|
|
|
return PointCloudSampler( |
|
device=device, |
|
models=[t2m_model if txt2obj else i2m_model, upsampler_model], |
|
diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion], |
|
num_points=[1024, 4096 - 1024], |
|
aux_channels=['R', 'G', 'B'], |
|
guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale], |
|
model_kwargs_key_filter=('texts', '') if txt2obj else ("*",) |
|
) |
|
|
|
def generate_txt2img(prompt): |
|
|
|
prompt = f"“a 3d rendering of {prompt}, full view, white background" |
|
gallery_dir = stable_diffusion(prompt, fn_index=2) |
|
imgs = [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir) if os.path.splitext(img)[1] == '.jpg'] |
|
|
|
return imgs[0], gr.update(visible=True) |
|
|
|
def generate_3D(input, model_name='base40M', guidance_scale=3.0, grid_size=32): |
|
|
|
set_state('Entered generate function...') |
|
|
|
if isinstance(input, Image.Image): |
|
input = prepare_img(input) |
|
|
|
|
|
sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale) |
|
|
|
|
|
set_state('Sampling...') |
|
samples = None |
|
kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input]) |
|
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args): |
|
samples = x |
|
|
|
set_state('Converting to point cloud...') |
|
pc = sampler.output_to_point_clouds(samples)[0] |
|
|
|
set_state('Saving point cloud...') |
|
with open("point_cloud.ply", "wb") as f: |
|
pc.write_ply(f) |
|
|
|
set_state('Converting to mesh...') |
|
save_ply(pc, 'mesh.ply', grid_size) |
|
|
|
set_state('') |
|
|
|
return pc_to_plot(pc), ply_to_obj('mesh.ply', '3d_model.obj'), gr.update(value=['3d_model.obj', 'mesh.ply', 'point_cloud.ply'], visible=True) |
|
|
|
def prepare_img(img): |
|
|
|
w, h = img.size |
|
if w > h: |
|
img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h) |
|
else: |
|
img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2)) |
|
|
|
|
|
img = img.resize((256, 256)) |
|
|
|
return img |
|
|
|
def pc_to_plot(pc): |
|
|
|
return go.Figure( |
|
data=[ |
|
go.Scatter3d( |
|
x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2], |
|
mode='markers', |
|
marker=dict( |
|
size=2, |
|
color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])], |
|
) |
|
) |
|
], |
|
layout=dict( |
|
scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False)) |
|
), |
|
) |
|
|
|
def ply_to_obj(ply_file, obj_file): |
|
mesh = trimesh.load(ply_file) |
|
mesh.export(obj_file) |
|
|
|
return obj_file |
|
|
|
def save_ply(pc, file_name, grid_size): |
|
|
|
|
|
mesh = marching_cubes_mesh( |
|
pc=pc, |
|
model=sdf_model, |
|
batch_size=4096, |
|
grid_size=grid_size, |
|
fill_vertex_channels=True, |
|
progress=True, |
|
) |
|
|
|
|
|
with open(file_name, 'wb') as f: |
|
mesh.write_ply(f) |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("## Point-E text-to-3D Demo") |
|
gr.Markdown("This is a demo for [Point-E: A System for Generating 3D Point Clouds from Complex Prompts](https://arxiv.org/abs/2212.08751) by OpenAI. Check out the [GitHub repo](https://github.com/openai/point-e) for more information.") |
|
gr.HTML("""To skip the queue you can duplicate this space: |
|
<br><a href="https://huggingface.co/spaces/anzorq/point-e_demo?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> |
|
<br>Don't forget to change space hardware to <b>GPU</b> after duplicating it.""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Tab("Text to 3D"): |
|
prompt = gr.Textbox(label="Prompt", placeholder="A cactus in a pot") |
|
btn_generate_txt2obj = gr.Button(value="Generate") |
|
|
|
with gr.Tab("Image to 3D"): |
|
img = gr.Image(label="Image") |
|
gr.Markdown("Best results with images of 3D objects with no shadows on a white background.") |
|
btn_generate_img2obj = gr.Button(value="Generate") |
|
|
|
with gr.Tab("Text to Image to 3D"): |
|
gr.Markdown("Generate an image with Stable Diffusion, then convert it to 3D. Just enter the object you want to generate.") |
|
prompt_sd = gr.Textbox(label="Prompt", placeholder="a 3d rendering of [your prompt], full view, white background") |
|
btn_generate_txt2sd = gr.Button(value="Generate image") |
|
img_sd = gr.Image(label="Image") |
|
btn_generate_sd2obj = gr.Button(value="Convert to 3D", visible=False) |
|
|
|
with gr.Accordion("Advanced settings", open=False): |
|
dropdown_models = gr.Dropdown(label="Model", value="base40M", choices=["base40M", "base300M"]) |
|
guidance_scale = gr.Slider(label="Guidance scale", value=3.0, minimum=3.0, maximum=10.0, step=0.1) |
|
grid_size = gr.Slider(label="Grid size (for .obj 3D model)", value=32, minimum=16, maximum=128, step=16) |
|
|
|
with gr.Column(): |
|
plot = gr.Plot(label="Point cloud") |
|
|
|
model_3d = gr.Model3D(value=None) |
|
file_out = gr.File(label="Files", visible=False) |
|
|
|
|
|
|
|
|
|
|
|
outputs = [plot, model_3d, file_out] |
|
|
|
prompt.submit(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs) |
|
btn_generate_txt2obj.click(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs, api_name="generate_txt2obj") |
|
|
|
btn_generate_img2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs, api_name="generate_img2obj") |
|
|
|
prompt_sd.submit(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj]) |
|
btn_generate_txt2sd.click(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj], queue=False) |
|
btn_generate_sd2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs) |
|
|
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["a cactus in a pot"], |
|
["a round table with floral tablecloth"], |
|
["a red kettle"], |
|
["a vase with flowers"], |
|
["a sports car"], |
|
["a man"], |
|
], |
|
inputs=[prompt], |
|
outputs=outputs, |
|
fn=generate_3D, |
|
cache_examples=True |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["images/corgi.png"], |
|
["images/cube_stack.jpg"], |
|
["images/chair.png"], |
|
], |
|
inputs=[img], |
|
outputs=outputs, |
|
fn=generate_3D, |
|
cache_examples=True |
|
) |
|
|
|
|
|
|
|
gr.HTML(""" |
|
<br><br> |
|
<div style="border-top: 1px solid #303030;"> |
|
<br> |
|
<p>Space by:<br> |
|
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br> |
|
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br> |
|
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 30px !important;width: 102px !important;" ></a><br><br> |
|
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.point-e_demo" alt="visitors"></p> |
|
</div> |
|
""") |
|
|
|
app.queue(max_size=250, concurrency_count=6).launch() |
|
|