Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
from datasets import load_dataset
|
4 |
import torch
|
5 |
import numpy as np
|
@@ -10,7 +10,13 @@ caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captionin
|
|
10 |
# Load SpeechT5 model for text-to-speech
|
11 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
12 |
|
13 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
15 |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
16 |
|
@@ -26,15 +32,26 @@ def process_image(image):
|
|
26 |
forward_params={"speaker_embeddings": speaker_embedding}
|
27 |
)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Prepare audio data
|
30 |
audio = np.array(speech["audio"])
|
31 |
rate = speech["sampling_rate"]
|
32 |
|
33 |
-
# Return
|
34 |
-
return (rate, audio), caption
|
35 |
|
36 |
except Exception as e:
|
37 |
-
return None, f"Error: {str(e)}"
|
38 |
|
39 |
|
40 |
# Gradio Interface
|
@@ -43,11 +60,11 @@ iface = gr.Interface(
|
|
43 |
inputs=gr.Image(type='pil', label="Upload an Image"),
|
44 |
outputs=[
|
45 |
gr.Audio(label="Generated Audio"),
|
46 |
-
gr.Textbox(label="Generated Caption")
|
|
|
47 |
],
|
48 |
-
title="SeeSay",
|
49 |
-
description="Upload an image to generate a caption
|
50 |
)
|
51 |
|
52 |
iface.launch()
|
53 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM
|
3 |
from datasets import load_dataset
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
10 |
# Load SpeechT5 model for text-to-speech
|
11 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
12 |
|
13 |
+
# Load Florence-2 model for OCR
|
14 |
+
ocr_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
15 |
+
ocr_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
+
ocr_model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=ocr_dtype, trust_remote_code=True).to(ocr_device)
|
17 |
+
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
18 |
+
|
19 |
+
# Load speaker embedding
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
|
|
32 |
forward_params={"speaker_embeddings": speaker_embedding}
|
33 |
)
|
34 |
|
35 |
+
# Extract text (OCR) using Florence-2
|
36 |
+
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(ocr_device, ocr_dtype)
|
37 |
+
generated_ids = ocr_model.generate(
|
38 |
+
input_ids=inputs["input_ids"],
|
39 |
+
pixel_values=inputs["pixel_values"],
|
40 |
+
max_new_tokens=4096,
|
41 |
+
num_beams=3,
|
42 |
+
do_sample=False
|
43 |
+
)
|
44 |
+
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
45 |
+
|
46 |
# Prepare audio data
|
47 |
audio = np.array(speech["audio"])
|
48 |
rate = speech["sampling_rate"]
|
49 |
|
50 |
+
# Return audio, caption, and extracted text
|
51 |
+
return (rate, audio), caption, extracted_text
|
52 |
|
53 |
except Exception as e:
|
54 |
+
return None, f"Error: {str(e)}", ""
|
55 |
|
56 |
|
57 |
# Gradio Interface
|
|
|
60 |
inputs=gr.Image(type='pil', label="Upload an Image"),
|
61 |
outputs=[
|
62 |
gr.Audio(label="Generated Audio"),
|
63 |
+
gr.Textbox(label="Generated Caption"),
|
64 |
+
gr.Textbox(label="Extracted Text (OCR)")
|
65 |
],
|
66 |
+
title="SeeSay with SpeechT5 and Florence-2 OCR",
|
67 |
+
description="Upload an image to generate a caption, hear it described with SpeechT5's speech synthesis, and extract text using Florence-2 OCR."
|
68 |
)
|
69 |
|
70 |
iface.launch()
|
|