Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,39 +5,36 @@ from transformers import (
|
|
5 |
AutoModelForCausalLM,
|
6 |
AutoTokenizer,
|
7 |
GenerationConfig,
|
|
|
8 |
set_seed
|
9 |
)
|
10 |
from datasets import load_dataset
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
|
14 |
-
# Set seed for reproducibility
|
15 |
set_seed(42)
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
|
|
18 |
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
19 |
|
20 |
-
# Load SpeechT5
|
21 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
22 |
|
23 |
-
# Load Florence-2
|
24 |
-
ocr_device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
-
ocr_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
26 |
ocr_model = AutoModelForCausalLM.from_pretrained(
|
27 |
-
"microsoft/Florence-2-large",
|
28 |
-
|
29 |
-
trust_remote_code=True
|
30 |
-
).to(ocr_device)
|
31 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
32 |
|
33 |
-
# Load Doge-320M-Instruct
|
34 |
doge_tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M-Instruct")
|
35 |
doge_model = AutoModelForCausalLM.from_pretrained(
|
36 |
-
"SmallDoge/Doge-320M-Instruct",
|
37 |
-
|
38 |
-
trust_remote_code=True
|
39 |
-
).to("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
-
|
41 |
doge_generation_config = GenerationConfig(
|
42 |
max_new_tokens=100,
|
43 |
use_cache=True,
|
@@ -47,26 +44,26 @@ doge_generation_config = GenerationConfig(
|
|
47 |
repetition_penalty=1.0
|
48 |
)
|
49 |
|
50 |
-
# Load
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
# Force embedding to 600 dimensions
|
55 |
-
if len(raw_vec) > 600:
|
56 |
-
raw_vec = raw_vec[:600]
|
57 |
-
elif len(raw_vec) < 600:
|
58 |
-
raw_vec = raw_vec + [0.0] * (600 - len(raw_vec))
|
59 |
-
|
60 |
-
speaker_embedding = torch.tensor(raw_vec, dtype=torch.float32).unsqueeze(0) # shape [1, 600]
|
61 |
-
assert speaker_embedding.shape == (1, 600), f"Speaker embedding shape is {speaker_embedding.shape}, expected (1, 600)"
|
62 |
|
63 |
def process_image(image):
|
64 |
try:
|
65 |
-
#
|
66 |
caption = caption_model(image)[0]['generated_text']
|
67 |
|
68 |
-
#
|
69 |
-
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(
|
70 |
generated_ids = ocr_model.generate(
|
71 |
input_ids=inputs["input_ids"],
|
72 |
pixel_values=inputs["pixel_values"],
|
@@ -76,23 +73,23 @@ def process_image(image):
|
|
76 |
)
|
77 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
78 |
|
79 |
-
#
|
80 |
prompt = f"Determine the context of this image based on the caption and extracted text.\nCaption: {caption}\nExtracted text: {extracted_text}\nContext:"
|
|
|
81 |
conversation = [{"role": "user", "content": prompt}]
|
82 |
doge_inputs = doge_tokenizer.apply_chat_template(
|
83 |
conversation=conversation,
|
84 |
tokenize=True,
|
85 |
return_tensors="pt"
|
86 |
-
).to(
|
87 |
|
88 |
-
|
89 |
-
doge_inputs,
|
90 |
generation_config=doge_generation_config
|
91 |
)
|
|
|
92 |
|
93 |
-
context
|
94 |
-
|
95 |
-
# Step 4: Convert context to speech
|
96 |
speech = synthesiser(
|
97 |
context,
|
98 |
forward_params={"speaker_embeddings": speaker_embedding}
|
@@ -118,7 +115,7 @@ iface = gr.Interface(
|
|
118 |
gr.Textbox(label="Generated Context")
|
119 |
],
|
120 |
title="SeeSay Contextualizer with Doge-320M",
|
121 |
-
description="Upload an image to
|
122 |
)
|
123 |
|
124 |
-
iface.launch()
|
|
|
5 |
AutoModelForCausalLM,
|
6 |
AutoTokenizer,
|
7 |
GenerationConfig,
|
8 |
+
TextStreamer,
|
9 |
set_seed
|
10 |
)
|
11 |
from datasets import load_dataset
|
12 |
import torch
|
13 |
import numpy as np
|
14 |
|
|
|
15 |
set_seed(42)
|
16 |
|
17 |
+
# Device and dtype
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
20 |
+
|
21 |
+
# Load image captioning model
|
22 |
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
23 |
|
24 |
+
# Load SpeechT5 text-to-speech model
|
25 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
26 |
|
27 |
+
# Load OCR model (Florence-2)
|
|
|
|
|
28 |
ocr_model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
"microsoft/Florence-2-large", torch_dtype=dtype, trust_remote_code=True
|
30 |
+
).to(device)
|
|
|
|
|
31 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
32 |
|
33 |
+
# Load Doge-320M-Instruct for context generation
|
34 |
doge_tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M-Instruct")
|
35 |
doge_model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
"SmallDoge/Doge-320M-Instruct", trust_remote_code=True
|
37 |
+
).to(device)
|
|
|
|
|
|
|
38 |
doge_generation_config = GenerationConfig(
|
39 |
max_new_tokens=100,
|
40 |
use_cache=True,
|
|
|
44 |
repetition_penalty=1.0
|
45 |
)
|
46 |
|
47 |
+
# Load speaker embedding with exactly 600 values
|
48 |
+
speaker_embedding = None
|
49 |
+
embedding_data = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
50 |
+
for entry in embedding_data:
|
51 |
+
vec = entry["xvector"]
|
52 |
+
if len(vec) >= 600:
|
53 |
+
speaker_embedding = torch.tensor(vec[:600], dtype=torch.float32).unsqueeze(0) # Shape: [1, 600]
|
54 |
+
break
|
55 |
+
if speaker_embedding is None:
|
56 |
+
raise ValueError("No suitable speaker embedding of at least 600 dimensions found.")
|
57 |
+
assert speaker_embedding.shape == (1, 600), f"Expected shape (1, 600), got {speaker_embedding.shape}"
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def process_image(image):
|
61 |
try:
|
62 |
+
# 1. Caption the image
|
63 |
caption = caption_model(image)[0]['generated_text']
|
64 |
|
65 |
+
# 2. OCR with Florence-2
|
66 |
+
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(device, dtype)
|
67 |
generated_ids = ocr_model.generate(
|
68 |
input_ids=inputs["input_ids"],
|
69 |
pixel_values=inputs["pixel_values"],
|
|
|
73 |
)
|
74 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
75 |
|
76 |
+
# 3. Prompt Doge model for context generation
|
77 |
prompt = f"Determine the context of this image based on the caption and extracted text.\nCaption: {caption}\nExtracted text: {extracted_text}\nContext:"
|
78 |
+
prompt = prompt[:600] # Ensure prompt isn't too long
|
79 |
conversation = [{"role": "user", "content": prompt}]
|
80 |
doge_inputs = doge_tokenizer.apply_chat_template(
|
81 |
conversation=conversation,
|
82 |
tokenize=True,
|
83 |
return_tensors="pt"
|
84 |
+
).to(device)
|
85 |
|
86 |
+
doge_output = doge_model.generate(
|
87 |
+
input_ids=doge_inputs,
|
88 |
generation_config=doge_generation_config
|
89 |
)
|
90 |
+
context = doge_tokenizer.decode(doge_output[0], skip_special_tokens=True).strip()
|
91 |
|
92 |
+
# 4. Convert context to speech
|
|
|
|
|
93 |
speech = synthesiser(
|
94 |
context,
|
95 |
forward_params={"speaker_embeddings": speaker_embedding}
|
|
|
115 |
gr.Textbox(label="Generated Context")
|
116 |
],
|
117 |
title="SeeSay Contextualizer with Doge-320M",
|
118 |
+
description="Upload an image to caption it, extract text, generate context, and hear the result as speech."
|
119 |
)
|
120 |
|
121 |
+
iface.launch(share=True)
|