Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from datasets import load_dataset
|
4 |
import torch
|
5 |
import numpy as np
|
@@ -14,25 +21,43 @@ caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captionin
|
|
14 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
15 |
|
16 |
# Load Florence-2 model for OCR
|
17 |
-
ocr_device = "cuda
|
18 |
ocr_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
19 |
-
ocr_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
20 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
21 |
|
22 |
-
# Load
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
# Load speaker embedding
|
26 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
27 |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
28 |
|
29 |
|
30 |
def process_image(image):
|
31 |
try:
|
32 |
-
# Generate caption
|
33 |
caption = caption_model(image)[0]['generated_text']
|
34 |
|
35 |
-
#
|
36 |
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(ocr_device, ocr_dtype)
|
37 |
generated_ids = ocr_model.generate(
|
38 |
input_ids=inputs["input_ids"],
|
@@ -43,22 +68,31 @@ def process_image(image):
|
|
43 |
)
|
44 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
45 |
|
46 |
-
# Generate context using
|
47 |
-
prompt = f"Determine the context of this image based on the caption and extracted text
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
# Convert context to speech
|
52 |
speech = synthesiser(
|
53 |
context,
|
54 |
forward_params={"speaker_embeddings": speaker_embedding}
|
55 |
)
|
56 |
|
57 |
-
# Prepare audio data
|
58 |
audio = np.array(speech["audio"])
|
59 |
rate = speech["sampling_rate"]
|
60 |
|
61 |
-
# Return audio, caption, extracted text, and context
|
62 |
return (rate, audio), caption, extracted_text, context
|
63 |
|
64 |
except Exception as e:
|
@@ -75,8 +109,8 @@ iface = gr.Interface(
|
|
75 |
gr.Textbox(label="Extracted Text (OCR)"),
|
76 |
gr.Textbox(label="Generated Context")
|
77 |
],
|
78 |
-
title="SeeSay Contextualizer with
|
79 |
-
description="Upload an image to generate a caption, extract text,
|
80 |
)
|
81 |
|
82 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import (
|
3 |
+
pipeline,
|
4 |
+
AutoProcessor,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
AutoTokenizer,
|
7 |
+
GenerationConfig,
|
8 |
+
set_seed
|
9 |
+
)
|
10 |
from datasets import load_dataset
|
11 |
import torch
|
12 |
import numpy as np
|
|
|
21 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
22 |
|
23 |
# Load Florence-2 model for OCR
|
24 |
+
ocr_device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
ocr_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
26 |
+
ocr_model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
"microsoft/Florence-2-large",
|
28 |
+
torch_dtype=ocr_dtype,
|
29 |
+
trust_remote_code=True
|
30 |
+
).to(ocr_device)
|
31 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
32 |
|
33 |
+
# Load Doge-320M-Instruct model for context generation
|
34 |
+
doge_tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M-Instruct")
|
35 |
+
doge_model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
"SmallDoge/Doge-320M-Instruct",
|
37 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
38 |
+
trust_remote_code=True
|
39 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
|
41 |
+
doge_generation_config = GenerationConfig(
|
42 |
+
max_new_tokens=100,
|
43 |
+
use_cache=True,
|
44 |
+
do_sample=True,
|
45 |
+
temperature=0.8,
|
46 |
+
top_p=0.9,
|
47 |
+
repetition_penalty=1.0
|
48 |
+
)
|
49 |
|
50 |
+
# Load speaker embedding for SpeechT5
|
51 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
52 |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
53 |
|
54 |
|
55 |
def process_image(image):
|
56 |
try:
|
57 |
+
# Step 1: Generate caption
|
58 |
caption = caption_model(image)[0]['generated_text']
|
59 |
|
60 |
+
# Step 2: OCR to extract text
|
61 |
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(ocr_device, ocr_dtype)
|
62 |
generated_ids = ocr_model.generate(
|
63 |
input_ids=inputs["input_ids"],
|
|
|
68 |
)
|
69 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
70 |
|
71 |
+
# Step 3: Generate context using Doge model
|
72 |
+
prompt = f"Determine the context of this image based on the caption and extracted text.\nCaption: {caption}\nExtracted text: {extracted_text}\nContext:"
|
73 |
+
conversation = [{"role": "user", "content": prompt}]
|
74 |
+
doge_inputs = doge_tokenizer.apply_chat_template(
|
75 |
+
conversation=conversation,
|
76 |
+
tokenize=True,
|
77 |
+
return_tensors="pt"
|
78 |
+
).to(doge_model.device)
|
79 |
+
|
80 |
+
doge_outputs = doge_model.generate(
|
81 |
+
doge_inputs,
|
82 |
+
generation_config=doge_generation_config
|
83 |
+
)
|
84 |
+
|
85 |
+
context = doge_tokenizer.decode(doge_outputs[0], skip_special_tokens=True).strip()
|
86 |
|
87 |
+
# Step 4: Convert context to speech
|
88 |
speech = synthesiser(
|
89 |
context,
|
90 |
forward_params={"speaker_embeddings": speaker_embedding}
|
91 |
)
|
92 |
|
|
|
93 |
audio = np.array(speech["audio"])
|
94 |
rate = speech["sampling_rate"]
|
95 |
|
|
|
96 |
return (rate, audio), caption, extracted_text, context
|
97 |
|
98 |
except Exception as e:
|
|
|
109 |
gr.Textbox(label="Extracted Text (OCR)"),
|
110 |
gr.Textbox(label="Generated Context")
|
111 |
],
|
112 |
+
title="SeeSay Contextualizer with Doge-320M",
|
113 |
+
description="Upload an image to generate a caption, extract text (OCR), generate context using Doge, and turn it into speech using SpeechT5."
|
114 |
)
|
115 |
|
116 |
+
iface.launch()
|