Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
-
from transformers import AutoConfig
|
4 |
-
import numpy as np
|
5 |
-
from generator import load_csm_1b
|
6 |
-
import torchaudio
|
7 |
-
|
8 |
-
# Load the configuration manually
|
9 |
-
config = AutoConfig.from_pretrained("sesame/csm-1b")
|
10 |
-
|
11 |
-
# Load the model with config
|
12 |
-
generator = load_csm_1b(device="cpu", config=config)
|
13 |
|
14 |
# Load image-to-text model
|
15 |
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
16 |
|
17 |
def process_image(input_image):
|
18 |
try:
|
19 |
-
# Generate caption
|
20 |
caption = captioner(input_image)[0]['generated_text']
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
)
|
29 |
-
|
30 |
-
# Convert the audio tensor to NumPy for Gradio
|
31 |
-
audio_np = audio.unsqueeze(0).cpu().numpy()
|
32 |
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
fn=process_image,
|
41 |
-
inputs=gr.Image(type='pil', label="Upload Image"),
|
42 |
-
outputs=[
|
43 |
-
gr.Audio(type="numpy", label="Generated Speech"),
|
44 |
-
gr.Textbox(label="Generated Caption")
|
45 |
-
],
|
46 |
-
title="🎙️ SeeSay with CSM",
|
47 |
-
description="Upload an image to generate a caption and hear it narrated using CSM."
|
48 |
-
)
|
49 |
|
50 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load image-to-text model
|
5 |
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
6 |
|
7 |
def process_image(input_image):
|
8 |
try:
|
9 |
+
# Step 1: Generate caption
|
10 |
caption = captioner(input_image)[0]['generated_text']
|
11 |
+
return caption
|
12 |
+
except Exception as e:
|
13 |
+
return str(e)
|
14 |
|
15 |
+
# Set up Gradio app
|
16 |
+
with gr.Blocks(fill_height=True) as demo:
|
17 |
+
with gr.Sidebar():
|
18 |
+
gr.Markdown("# SeeSay - Powered by Sesame CSM")
|
19 |
+
gr.Markdown("This Space extracts captions from images and generates expressive speech using CSM.")
|
20 |
+
gr.Markdown("Sign in with your Hugging Face account to access the model.")
|
21 |
+
button = gr.LoginButton("Sign in")
|
|
|
|
|
|
|
22 |
|
23 |
+
# Image Upload and Caption Generation
|
24 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
25 |
+
caption_output = gr.Textbox(label="Generated Caption")
|
26 |
|
27 |
+
# Speech Generation using CSM
|
28 |
+
with gr.Row():
|
29 |
+
gr.Markdown("### Speech Generation")
|
30 |
+
gr.load("models/sesame/csm-1b", accept_token=button, provider="hf-inference")
|
31 |
|
32 |
+
# Link input and output
|
33 |
+
image_input.change(fn=process_image, inputs=image_input, outputs=caption_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
demo.launch()
|