Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def launch(input):
|
8 |
-
|
9 |
-
|
10 |
-
"role": "user",
|
11 |
-
"content":
|
12 |
-
[
|
13 |
-
{
|
14 |
-
"type": "image",
|
15 |
-
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"type": "text", "text": "Describe this image."
|
19 |
-
},
|
20 |
-
],
|
21 |
-
}
|
22 |
-
]
|
23 |
-
|
24 |
-
# Preparation for inference
|
25 |
-
text = processor.apply_chat_template(
|
26 |
-
messages, tokenize=False, add_generation_prompt=True
|
27 |
-
)
|
28 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
29 |
-
inputs = processor(
|
30 |
-
text=[text],
|
31 |
-
images=image_inputs,
|
32 |
-
videos=video_inputs,
|
33 |
-
padding=True,
|
34 |
-
return_tensors="pt",
|
35 |
-
)
|
36 |
-
inputs = inputs.to("cuda")
|
37 |
-
|
38 |
-
# Inference: Generation of the output
|
39 |
-
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
40 |
-
generated_ids_trimmed = [
|
41 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
42 |
-
]
|
43 |
-
output_text = processor.batch_decode(
|
44 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
45 |
-
)
|
46 |
-
return(output_text)
|
47 |
|
48 |
iface = gr.Interface(launch,
|
49 |
inputs=gr.Image(type='pil'),
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
+
import torch
|
4 |
|
5 |
+
model_path = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
|
6 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
7 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
8 |
+
model_path,
|
9 |
+
torch_dtype=torch.bfloat16,
|
10 |
+
_attn_implementation="flash_attention_2"
|
11 |
+
).to("cuda")
|
12 |
|
13 |
def launch(input):
|
14 |
+
out = model.generate(**input)
|
15 |
+
return(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
iface = gr.Interface(launch,
|
18 |
inputs=gr.Image(type='pil'),
|