Spaces:
Running
Running
Upload 2 files
Browse files- app.py +212 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import pandas as pd
|
5 |
+
import gradio as gr
|
6 |
+
from groq import Groq
|
7 |
+
import os
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
|
10 |
+
# Step 1: Scrape the free courses from Analytics Vidhya
|
11 |
+
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
|
12 |
+
response = requests.get(url)
|
13 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
14 |
+
|
15 |
+
courses = []
|
16 |
+
|
17 |
+
# Extracting course title, image, and course link
|
18 |
+
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
19 |
+
img_tag = course_card.find('img', class_='course-card__img')
|
20 |
+
|
21 |
+
if img_tag:
|
22 |
+
title = img_tag.get('alt')
|
23 |
+
image_url = img_tag.get('src')
|
24 |
+
|
25 |
+
link_tag = course_card.find_previous('a')
|
26 |
+
if link_tag:
|
27 |
+
course_link = link_tag.get('href')
|
28 |
+
if not course_link.startswith('http'):
|
29 |
+
course_link = 'https://courses.analyticsvidhya.com' + course_link
|
30 |
+
|
31 |
+
courses.append({
|
32 |
+
'title': title,
|
33 |
+
'image_url': image_url,
|
34 |
+
'course_link': course_link
|
35 |
+
})
|
36 |
+
|
37 |
+
# Step 2: Create DataFrame
|
38 |
+
df = pd.DataFrame(courses)
|
39 |
+
|
40 |
+
|
41 |
+
load_dotenv()
|
42 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
43 |
+
|
44 |
+
def search_courses(query):
|
45 |
+
try:
|
46 |
+
print(f"Searching for: {query}")
|
47 |
+
print(f"Number of courses in database: {len(df)}")
|
48 |
+
|
49 |
+
# Prepare the prompt for Groq
|
50 |
+
prompt = f"""Given the following query: "{query}"
|
51 |
+
Please analyze the query and rank the following courses based on their relevance to the query.
|
52 |
+
Prioritize courses from Analytics Vidhya. Provide a relevance score from 0 to 1 for each course.
|
53 |
+
Only return courses with a relevance score of 0.5 or higher.
|
54 |
+
Return the results in the following format:
|
55 |
+
Title: [Course Title]
|
56 |
+
Relevance: [Score]
|
57 |
+
|
58 |
+
Courses:
|
59 |
+
{df['title'].to_string(index=False)}
|
60 |
+
"""
|
61 |
+
|
62 |
+
print("Sending request to Groq...")
|
63 |
+
# Get response from Groq
|
64 |
+
response = client.chat.completions.create(
|
65 |
+
model="llama-3.2-1b-preview",
|
66 |
+
messages=[
|
67 |
+
{"role": "system", "content": "You are an AI assistant specialized in course recommendations."},
|
68 |
+
{"role": "user", "content": prompt}
|
69 |
+
],
|
70 |
+
temperature=0.2,
|
71 |
+
max_tokens=1000
|
72 |
+
)
|
73 |
+
print("Received response from Groq")
|
74 |
+
|
75 |
+
# Parse Groq's response
|
76 |
+
results = []
|
77 |
+
print("Groq response content:")
|
78 |
+
print(response.choices[0].message.content)
|
79 |
+
|
80 |
+
# Use regex to extract course titles and relevance scores
|
81 |
+
matches = re.findall(r'\*\*(.+?)\*\*\s*\(Relevance Score: (0\.\d+)\)', response.choices[0].message.content)
|
82 |
+
|
83 |
+
for title, score in matches:
|
84 |
+
title = title.strip()
|
85 |
+
score = float(score)
|
86 |
+
if score >= 0.5:
|
87 |
+
matching_courses = df[df['title'].str.contains(title[:30], case=False, na=False)]
|
88 |
+
if not matching_courses.empty:
|
89 |
+
course = matching_courses.iloc[0]
|
90 |
+
results.append({
|
91 |
+
'title': course['title'], # Use the full title from the database
|
92 |
+
'image_url': course['image_url'],
|
93 |
+
'course_link': course['course_link'],
|
94 |
+
'score': score
|
95 |
+
})
|
96 |
+
print(f"Added course: {course['title']}")
|
97 |
+
else:
|
98 |
+
print(f"Warning: Course not found in database: {title}")
|
99 |
+
|
100 |
+
print(f"Number of results found: {len(results)}")
|
101 |
+
return sorted(results, key=lambda x: x['score'], reverse=True)[:10] # Return top 10 results
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
print(f"An error occurred in search_courses: {str(e)}")
|
105 |
+
return []
|
106 |
+
|
107 |
+
def gradio_search(query):
|
108 |
+
result_list = search_courses(query)
|
109 |
+
|
110 |
+
if result_list:
|
111 |
+
html_output = '<div class="results-container">'
|
112 |
+
for item in result_list:
|
113 |
+
course_title = item['title']
|
114 |
+
course_image = item['image_url']
|
115 |
+
course_link = item['course_link']
|
116 |
+
relevance_score = round(item['score'] * 100, 2)
|
117 |
+
|
118 |
+
html_output += f'''
|
119 |
+
<div class="course-card">
|
120 |
+
<img src="{course_image}" alt="{course_title}" class="course-image"/>
|
121 |
+
<div class="course-info">
|
122 |
+
<h3>{course_title}</h3>
|
123 |
+
<p>Relevance: {relevance_score}%</p>
|
124 |
+
<a href="{course_link}" target="_blank" class="course-link">View Course</a>
|
125 |
+
</div>
|
126 |
+
</div>'''
|
127 |
+
html_output += '</div>'
|
128 |
+
return html_output
|
129 |
+
else:
|
130 |
+
return '<p class="no-results">No results found. Please try a different query.</p>'
|
131 |
+
|
132 |
+
custom_css = """
|
133 |
+
body {
|
134 |
+
font-family: Arial, Helvetica, sans-serif;
|
135 |
+
background-color: #f0f2f5;
|
136 |
+
}
|
137 |
+
.container {
|
138 |
+
max-width: 600px;
|
139 |
+
margin: 0 auto;
|
140 |
+
padding: 20px;
|
141 |
+
}
|
142 |
+
.results-container {
|
143 |
+
display: flex;
|
144 |
+
flex-direction: column;
|
145 |
+
}
|
146 |
+
.course-card {
|
147 |
+
background-color: white;
|
148 |
+
border-radius: 8px;
|
149 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
150 |
+
margin-bottom: 20px;
|
151 |
+
overflow: hidden;
|
152 |
+
width: 100%;
|
153 |
+
transition: transform 0.2s;
|
154 |
+
}
|
155 |
+
.course-card:hover {
|
156 |
+
transform: translateY(-5px);
|
157 |
+
}
|
158 |
+
.course-image {
|
159 |
+
width: 100%;
|
160 |
+
height: 200px;
|
161 |
+
object-fit: cover;
|
162 |
+
}
|
163 |
+
.course-info {
|
164 |
+
padding: 15px;
|
165 |
+
}
|
166 |
+
.course-info h3 {
|
167 |
+
margin-top: 0;
|
168 |
+
font-size: 18px;
|
169 |
+
color: #333;
|
170 |
+
}
|
171 |
+
.course-info p {
|
172 |
+
color: #666;
|
173 |
+
font-size: 14px;
|
174 |
+
margin-bottom: 10px;
|
175 |
+
}
|
176 |
+
.course-link {
|
177 |
+
display: inline-block;
|
178 |
+
background-color: #007bff;
|
179 |
+
color: white;
|
180 |
+
padding: 8px 12px;
|
181 |
+
text-decoration: none;
|
182 |
+
border-radius: 4px;
|
183 |
+
font-size: 14px;
|
184 |
+
transition: background-color 0.2s;
|
185 |
+
}
|
186 |
+
.course-link:hover {
|
187 |
+
background-color: #0056b3;
|
188 |
+
}
|
189 |
+
.no-results {
|
190 |
+
text-align: center;
|
191 |
+
color: #666;
|
192 |
+
font-style: italic;
|
193 |
+
}
|
194 |
+
"""
|
195 |
+
# Gradio interface
|
196 |
+
iface = gr.Interface(
|
197 |
+
fn=gradio_search,
|
198 |
+
inputs=gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning, data science, python"),
|
199 |
+
outputs=gr.HTML(label="Search Results"),
|
200 |
+
title="Analytics Vidhya Smart Search Tool",
|
201 |
+
description="Find the most relevant courses from Analytics Vidhya Website based on your query.",
|
202 |
+
theme="huggingface",
|
203 |
+
css=custom_css,
|
204 |
+
examples=[
|
205 |
+
["Tableau Course"],
|
206 |
+
["Machine Learning/Deep Learning with Python"],
|
207 |
+
["Business Analytics"]
|
208 |
+
],
|
209 |
+
)
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
iface.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.44.1
|
2 |
+
requests==2.32.3
|
3 |
+
pandas==2.2.3
|
4 |
+
beautifulsoup4==4.12.3
|
5 |
+
groq==0.11.0
|