|
import gradio as gr |
|
import pandas as pd |
|
import os |
|
import sys |
|
import requests |
|
import json |
|
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
|
from utils.validators import url |
|
|
|
|
|
BACKEND_API_URL = "https://pratham0011-shl-test-recommender-api.hf.space" |
|
|
|
def is_valid_url(input_url): |
|
return url(input_url) |
|
|
|
def get_recommendations(input_text, max_recommendations): |
|
try: |
|
is_url = is_valid_url(input_text) |
|
|
|
|
|
api_url = f"{BACKEND_API_URL}/recommend" |
|
payload = { |
|
"query": input_text, |
|
"max_recommendations": max_recommendations |
|
} |
|
|
|
response = requests.post(api_url, json=payload) |
|
response.raise_for_status() |
|
|
|
data = response.json() |
|
|
|
|
|
formatted_assessments = [] |
|
for assessment in data.get("recommended_assessments", []): |
|
formatted_assessments.append({ |
|
"url": assessment.get("url", ""), |
|
"adaptive_support": assessment.get("adaptive_support", "No"), |
|
"description": assessment.get("description", ""), |
|
"duration": assessment.get("duration", 60), |
|
"remote_support": assessment.get("remote_support", "No"), |
|
"test_type": ", ".join(assessment.get("test_type", ["General Assessment"])) |
|
}) |
|
|
|
df = pd.DataFrame(formatted_assessments) |
|
return df |
|
except Exception as e: |
|
|
|
return pd.DataFrame([{"url": "", "adaptive_support": "", "description": f"Error: {str(e)}", "duration": 0, "remote_support": "", "test_type": ""}]) |
|
|
|
with gr.Blocks(title="SHL Test Recommender") as demo: |
|
gr.Markdown("# SHL Test Recommender") |
|
gr.Markdown(""" |
|
This tool recommends SHL tests based on job descriptions or natural language queries. |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_text = gr.Textbox( |
|
label="Enter job description or URL", |
|
placeholder="Paste job description or URL here...", |
|
lines=10 |
|
) |
|
max_recommendations = gr.Slider( |
|
minimum=1, |
|
maximum=10, |
|
value=4, |
|
step=1, |
|
label="Maximum number of recommendations" |
|
) |
|
submit_btn = gr.Button("Get Recommendations", variant="primary") |
|
|
|
recommendations_output = gr.DataFrame( |
|
label="Recommended SHL Tests", |
|
headers=["url", "adaptive_support", "description", "duration", "remote_support", "test_type"], |
|
interactive=False |
|
) |
|
|
|
submit_btn.click( |
|
fn=get_recommendations, |
|
inputs=[input_text, max_recommendations], |
|
outputs=[recommendations_output] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860, share=False,debug = True) |
|
|