|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from typing import List |
|
import uvicorn |
|
import os |
|
import sys |
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
|
from recommender import SHLRecommender |
|
from utils.validators import url as is_valid_url |
|
|
|
app = FastAPI( |
|
title="SHL Test Recommender API", |
|
description="API for recommending SHL tests based on job descriptions or queries", |
|
version="1.0.0", |
|
docs_url="/docs", |
|
redoc_url="/redoc" |
|
) |
|
|
|
|
|
from fastapi.middleware.cors import CORSMiddleware |
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
recommender = SHLRecommender() |
|
|
|
|
|
class RecommendRequest(BaseModel): |
|
query: str |
|
max_recommendations: int = 10 |
|
|
|
class Assessment(BaseModel): |
|
url: str |
|
adaptive_support: str |
|
description: str |
|
duration: int |
|
remote_support: str |
|
test_type: List[str] |
|
|
|
class RecommendationResponse(BaseModel): |
|
recommended_assessments: List[Assessment] |
|
|
|
|
|
@app.get("/health") |
|
async def health_check(): |
|
try: |
|
if not recommender or not hasattr(recommender, 'df') or recommender.df.empty: |
|
return {"status": "unhealthy"} |
|
|
|
if not hasattr(recommender, 'embedding_model') or not hasattr(recommender, 'model') or not hasattr(recommender, 'tokenizer'): |
|
return {"status": "unhealthy"} |
|
|
|
if not hasattr(recommender, 'product_embeddings') or len(recommender.product_embeddings) == 0: |
|
return {"status": "unhealthy"} |
|
|
|
return {"status": "healthy"} |
|
except Exception: |
|
return {"status": "unhealthy"} |
|
|
|
@app.get("/") |
|
async def root(): |
|
return {"message": "Welcome to the SHL Test Recommender API."} |
|
|
|
@app.post("/optimize") |
|
async def optimize_memory(): |
|
try: |
|
recommender.optimize_memory() |
|
return {"status": "success", "message": "Memory optimized successfully"} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
@app.post("/recommend", response_model=RecommendationResponse) |
|
async def recommend(request: RecommendRequest): |
|
return await process_recommendation(request.query, request.max_recommendations) |
|
|
|
|
|
async def process_recommendation(query: str, max_recommendations: int): |
|
try: |
|
is_url = is_valid_url(query) |
|
|
|
recommendations = recommender.get_recommendations( |
|
query, |
|
is_url=is_url, |
|
max_recommendations=max_recommendations |
|
) |
|
|
|
formatted_assessments = [] |
|
for rec in recommendations: |
|
duration_str = rec['Duration'] |
|
try: |
|
duration_int = int(''.join(filter(str.isdigit, duration_str))) |
|
except: |
|
duration_int = 60 |
|
|
|
test_type_list = [rec['Test Type']] if rec['Test Type'] and rec['Test Type'] != "Unknown" else ["General Assessment"] |
|
|
|
test_description = recommender.generate_test_description( |
|
test_name=rec['Test Name'], |
|
test_type=rec['Test Type'] if rec['Test Type'] and rec['Test Type'] != "Unknown" else "General Assessment" |
|
) |
|
|
|
description = test_description |
|
|
|
formatted_assessments.append( |
|
Assessment( |
|
url=rec['Link'], |
|
adaptive_support="Yes" if rec['Adaptive/IRT'] == "Yes" else "No", |
|
description=description, |
|
duration=duration_int, |
|
remote_support="Yes" if rec['Remote Testing'] == "Yes" else "No", |
|
test_type=test_type_list |
|
) |
|
) |
|
|
|
return RecommendationResponse( |
|
recommended_assessments=formatted_assessments |
|
) |
|
except Exception as e: |
|
try: |
|
recommender.optimize_memory() |
|
except: |
|
pass |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
if __name__ == "__main__": |
|
|
|
IS_HF_SPACE = os.environ.get('SPACE_ID') is not None |
|
port = 7860 if IS_HF_SPACE else 8000 |
|
|
|
print(f"Starting FastAPI server on port {port}") |
|
uvicorn.run("app:app", host="0.0.0.0", port=port, reload=True) |
|
|