File size: 11,347 Bytes
ebf4e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import requests
from bs4 import BeautifulSoup
import torch
import gc
import time
from transformers import AutoTokenizer, AutoModelForCausalLM

class SHLRecommender:
    _cache = {}
    _cache_size = 20
    def __init__(self, data_path='utils/data.csv'):
        try:
            self.df = pd.read_csv(data_path)
        except FileNotFoundError:
            raise FileNotFoundError(f"Data file not found at {data_path}. Please check the path.")

        self.df.columns = [col.strip() for col in self.df.columns]

        try:
            import os
            cache_dir = os.path.join(os.getcwd(), 'model_cache')
            os.makedirs(cache_dir, exist_ok=True)
            print(f"Using cache directory: {cache_dir}")

            self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2', cache_folder=cache_dir)
            print("Successfully loaded all-MiniLM-L6-v2 model")
        except Exception as e:
            print(f"Error loading primary model: {str(e)}")
            try:
                # Try a different model as fallback
                print("Trying fallback model: paraphrase-MiniLM-L3-v2")
                self.embedding_model = SentenceTransformer('paraphrase-MiniLM-L3-v2', cache_folder=cache_dir)
                print("Successfully loaded fallback model")
            except Exception as e2:
                print(f"Error loading fallback model: {str(e2)}")
                # Create a simple embedding model as last resort
                from sentence_transformers import models, SentenceTransformer
                print("Creating basic embedding model from scratch")
                word_embedding_model = models.Transformer('bert-base-uncased', cache_dir=cache_dir)
                pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
                self.embedding_model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
                print("Created basic embedding model")

        model_id = "Qwen/Qwen2.5-0.5B-Instruct"

        self.tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            trust_remote_code=True,
            use_fast=True,
            model_max_length=512,
        )

        try:
            print(f"Loading Qwen model: {model_id}")
            self.model = AutoModelForCausalLM.from_pretrained(
                model_id,
                trust_remote_code=True,
                torch_dtype=torch.float32,
                device_map="auto",
                low_cpu_mem_usage=True,
                cache_dir=cache_dir,
                local_files_only=False,  
                revision="main"
            )
            print("Successfully loaded Qwen model")
        except ValueError as e:
            print(f"Error with device_map: {str(e)}")
            try:
                print("Trying without device_map")
                self.model = AutoModelForCausalLM.from_pretrained(
                    model_id,
                    trust_remote_code=True,
                    torch_dtype=torch.float32,
                    low_cpu_mem_usage=True,
                    cache_dir=cache_dir
                )
                print("Successfully loaded Qwen model without device_map")
            except Exception as e2:
                print(f"Error loading Qwen model: {str(e2)}")
                try:
                    print("Trying fallback to smaller model: distilgpt2")
                    self.model = AutoModelForCausalLM.from_pretrained(
                        "distilgpt2",  
                        cache_dir=cache_dir
                    )
                    self.tokenizer = AutoTokenizer.from_pretrained(
                        "distilgpt2",
                        cache_dir=cache_dir
                    )
                    print("Successfully loaded fallback model")
                except Exception as e3:
                    print(f"All model loading attempts failed: {str(e3)}")
                    raise ValueError("Could not load any language model. Please check your environment and permissions.")

        self.create_embeddings()

    def create_embeddings(self):
        texts = []
        for _, row in self.df.iterrows():
            text = f"{row['Test Name']} {row['Test Type']}"
            texts.append(text)

        self.product_embeddings = self.embedding_model.encode(texts)

    def extract_text_from_url(self, url):
        try:
            response = requests.get(url)
            response.raise_for_status()

            soup = BeautifulSoup(response.content, 'html.parser')

            for script in soup(["script", "style"]):
                script.extract()

            text = soup.get_text()

            lines = (line.strip() for line in text.splitlines())
            chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
            text = '\n'.join(chunk for chunk in chunks if chunk)

            return text
        except Exception as e:
            return f"Error extracting text from URL: {str(e)}"

    def optimize_memory(self):

        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        self._cache.clear()

        gc.collect()

        return {"status": "Memory optimized"}

    def generate_test_description(self, test_name, test_type):
        try:
            cache_key = f"{test_name}_{test_type}"
            if cache_key in self._cache:
                return self._cache[cache_key]

            prompt = f"Write a short, factual description of '{test_name}', a {test_type} assessment, in 1-2 sentences."

            inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=128, padding=True)

            with torch.no_grad():
                outputs = self.model.generate(
                    inputs.input_ids,
                    attention_mask=inputs.attention_mask,
                    max_new_tokens=40,
                    temperature=0.2,  
                    top_p=0.95,
                    do_sample=False,
                    no_repeat_ngram_size=3 
                )

            full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)

            generated_text = full_response.replace(prompt, "").strip()

            if len(generated_text) < 20 or "write" in generated_text.lower() or "description" in generated_text.lower():
                if test_type.lower() in ["cognitive ability", "cognitive", "reasoning"]:
                    description = f"The {test_name} measures cognitive abilities and problem-solving skills."
                elif "numerical" in test_name.lower() or "numerical" in test_type.lower():
                    description = f"The {test_name} assesses numerical reasoning and data analysis abilities."
                elif "verbal" in test_name.lower() or "verbal" in test_type.lower():
                    description = f"The {test_name} evaluates verbal reasoning and language comprehension skills."
                elif "personality" in test_type.lower() or "behavioral" in test_type.lower():
                    description = f"The {test_name} assesses behavioral tendencies and personality traits in workplace contexts."
                elif "technical" in test_type.lower() or any(tech in test_name.lower() for tech in ["java", "python", ".net", "sql", "coding"]):
                    description = f"The {test_name} evaluates technical knowledge and programming skills."
                else:
                    description = f"The {test_name} assesses candidate suitability through standardized methods."
            else:
                description = generated_text

            if len(self._cache) >= self._cache_size:
                self._cache.pop(next(iter(self._cache)))
            self._cache[cache_key] = description

            return description

        except Exception:
            if test_type.lower() in ["cognitive ability", "cognitive", "reasoning"]:
                return f"The {test_name} measures cognitive abilities through structured problem-solving tasks."
            elif test_type.lower() in ["personality", "behavioral"]:
                return f"The {test_name} assesses behavioral tendencies and personality traits."
            elif "technical" in test_type.lower():
                return f"The {test_name} evaluates technical knowledge and skills."
            else:
                return f"The {test_name} assesses {test_type.lower()} capabilities."

    def check_health(self):
        try:
            test_prompt = "This is a test prompt to check model health."

            start_time = time.time()
            inputs = self.tokenizer(
                test_prompt,
                return_tensors="pt",
                truncation=True,
                max_length=32,
                padding=True
            )
            tokenization_time = time.time() - start_time

            start_time = time.time()
            with torch.no_grad():
                _ = self.model.generate(
                    inputs.input_ids,
                    attention_mask=inputs.attention_mask,
                    max_new_tokens=20,
                    do_sample=True
                )
            inference_time = time.time() - start_time

            start_time = time.time()
            self.embedding_model.encode(["Test embedding"])
            embedding_time = time.time() - start_time

            return {
                "status": "healthy",
                "tokenization_time_ms": round(tokenization_time * 1000, 2),
                "inference_time_ms": round(inference_time * 1000, 2),
                "embedding_time_ms": round(embedding_time * 1000, 2),
                "cache_size": len(self._cache)
            }
        except Exception as e:
            return {"status": "unhealthy", "error": str(e)}

    def get_recommendations(self, query, is_url=False, max_recommendations=10):
        self._cache.clear()

        if is_url:
            text = self.extract_text_from_url(query)
        else:
            text = query

        max_text_length = 2000
        if len(text) > max_text_length:
            text = text[:max_text_length] + "..."

        query_embedding = self.embedding_model.encode(text[:1000])

        similarity_scores = cosine_similarity(
            [query_embedding],
            self.product_embeddings
        )[0]

        top_indices = np.argsort(similarity_scores)[::-1][:max_recommendations]

        recommendations = []
        for idx in top_indices:
            recommendations.append({
                'Test Name': self.df.iloc[idx]['Test Name'],
                'Test Type': self.df.iloc[idx]['Test Type'],
                'Remote Testing': self.df.iloc[idx]['Remote Testing (Yes/No)'],
                'Adaptive/IRT': self.df.iloc[idx]['Adaptive/IRT (Yes/No)'],
                'Duration': self.df.iloc[idx]['Duration'],
                'Link': self.df.iloc[idx]['Link']
            })

        return recommendations