Spaces:
Sleeping
Sleeping
File size: 7,196 Bytes
43be43c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
from tensorflow.keras.applications.vgg19 import VGG19, preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import Model
# Load VGG19 model
model = VGG19(include_top=False, weights='imagenet')
model.trainable = False
# Define content and style layers
content_layer = 'block5_conv2'
content_model = Model(inputs=model.input,
outputs=model.get_layer(content_layer).output)
style_layers = ['block1_conv1', 'block3_conv1', 'block5_conv1']
style_models = [Model(inputs=model.input, outputs=model.get_layer(
layer).output) for layer in style_layers]
weight_of_layer = 1. / len(style_models)
def process_image(img):
# Convert to array and preprocess
img = img_to_array(img)
img = preprocess_input(img)
img = np.expand_dims(img, axis=0)
return img
def deprocess(img):
# Perform the inverse of the preprocessing step
img = img.copy() # Create a copy to avoid modifying the original
img[:, :, 0] += 103.939
img[:, :, 1] += 116.779
img[:, :, 2] += 123.68
# Convert BGR to RGB
img = img[:, :, ::-1]
img = np.clip(img, 0, 255).astype('uint8')
return img
# Gram matrix
def gram_matrix(A):
channels = int(A.shape[-1])
a = tf.reshape(A, [-1, channels])
n = tf.shape(a)[0]
gram = tf.matmul(a, a, transpose_a=True)
return gram / tf.cast(n, tf.float32)
# Content loss
def content_loss(content, generated):
a_C = content_model(content)
a_G = content_model(generated)
loss = tf.reduce_mean(tf.square(a_C - a_G))
return loss
# Style loss
def style_cost(style, generated):
J_style = 0
for style_model in style_models:
a_S = style_model(style)
a_G = style_model(generated)
GS = gram_matrix(a_S)
GG = gram_matrix(a_G)
current_cost = tf.reduce_mean(tf.square(GS - GG))
J_style += current_cost * weight_of_layer
return J_style
# Total Loss Function
def compute_total_loss(content, style, generated, alpha=10, beta=1000):
J_content = content_loss(content, generated)
J_style = style_cost(style, generated)
return alpha * J_content + beta * J_style
def ensure_pil_image(img):
if isinstance(img, np.ndarray):
return Image.fromarray(img.astype('uint8'))
return img
def neural_style_transfer(content_img, style_img, iterations=50, alpha=10, beta=1000):
try:
# Ensure we have PIL images
content_img_pil = ensure_pil_image(content_img)
style_img_pil = ensure_pil_image(style_img)
# Resize images to a manageable size
content_img_pil = content_img_pil.resize((300, 300), Image.LANCZOS)
style_img_pil = style_img_pil.resize((300, 300), Image.LANCZOS)
# Process images
content = process_image(content_img_pil)
style = process_image(style_img_pil)
# Initialize with content image
generated = tf.Variable(content, dtype=tf.float32)
# Optimizer
opt = tf.keras.optimizers.Adam(learning_rate=0.7)
progress_images = []
for i in range(iterations):
with tf.GradientTape() as tape:
total_loss = compute_total_loss(
content, style, generated, alpha, beta)
# Get gradients and apply
grads = tape.gradient(total_loss, generated)
opt.apply_gradients([(grads, generated)])
if i % 10 == 0 or i == iterations - 1:
# Save progress image
current_img = generated.numpy()
img_squeezed = np.squeeze(current_img, axis=0)
img_deprocessed = deprocess(img_squeezed)
progress_images.append(Image.fromarray(img_deprocessed))
print(f"Iteration {i}, Loss: {total_loss.numpy()}")
# Get final image
final_img = generated.numpy()
final_img = np.squeeze(final_img, axis=0)
final_img = deprocess(final_img)
return Image.fromarray(final_img), progress_images
except Exception as e:
print(f"Error in neural_style_transfer: {e}")
# Return a default error image
error_img = Image.new('RGB', (300, 300), color='red')
return error_img, []
def style_transfer_interface(content_img, style_img, iterations=50, content_weight=10, style_weight=1000):
# Check if images are provided
if content_img is None or style_img is None:
return None
# Perform style transfer
result_img, _ = neural_style_transfer(
content_img,
style_img,
iterations=iterations,
alpha=content_weight,
beta=style_weight
)
return result_img
# Example images
content_path = "content/images/content"
style_path = "content/styles/style"
example_content_1 = f"{content_path}1.jpg"
example_content_2 = f"{content_path}2.jpg"
example_content_3 = f"{content_path}3.jpg"
example_style_1 = f"{style_path}1.jpg"
example_style_2 = f"{style_path}2.jpg"
example_style_3 = f"{style_path}3.jpg"
examples = [
[example_content_1, example_style_1, 10, 5, 1000],
[example_content_2, example_style_2, 20, 10, 1500],
[example_content_3, example_style_3, 50, 15, 2000],
]
with gr.Blocks(title="Neural Style Transfer") as app:
gr.Markdown("# Neural Style Transfer App")
gr.Markdown(
"Upload a content image and a style image to generate a stylized result")
with gr.Row():
with gr.Column():
content_input = gr.Image(label="Content Image", type="pil")
style_input = gr.Image(label="Style Image", type="pil")
with gr.Row():
iterations_slider = gr.Slider(
minimum=10, maximum=100, value=50, step=10,
label="Iterations"
)
with gr.Row():
content_weight_slider = gr.Slider(
minimum=1, maximum=20, value=10, step=1,
label="Content Weight"
)
style_weight_slider = gr.Slider(
minimum=500, maximum=2000, value=1000, step=100,
label="Style Weight"
)
submit_btn = gr.Button("Generate Stylized Image")
with gr.Column():
output_image = gr.Image(label="Stylized Result")
gr.Examples(
examples=examples,
inputs=[content_input, style_input, iterations_slider,
content_weight_slider, style_weight_slider],
outputs=output_image,
fn=style_transfer_interface,
cache_examples=False,
)
submit_btn.click(
fn=style_transfer_interface,
inputs=[content_input, style_input, iterations_slider,
content_weight_slider, style_weight_slider],
outputs=output_image
)
# Launch the app
if __name__ == "__main__":
app.launch(share=True, debug=True) |