File size: 7,196 Bytes
43be43c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image

from tensorflow.keras.applications.vgg19 import VGG19, preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import Model

# Load VGG19 model
model = VGG19(include_top=False, weights='imagenet')
model.trainable = False

# Define content and style layers
content_layer = 'block5_conv2'
content_model = Model(inputs=model.input,
                      outputs=model.get_layer(content_layer).output)

style_layers = ['block1_conv1', 'block3_conv1', 'block5_conv1']
style_models = [Model(inputs=model.input, outputs=model.get_layer(
    layer).output) for layer in style_layers]
weight_of_layer = 1. / len(style_models)


def process_image(img):
    # Convert to array and preprocess
    img = img_to_array(img)
    img = preprocess_input(img)
    img = np.expand_dims(img, axis=0)
    return img


def deprocess(img):
    # Perform the inverse of the preprocessing step
    img = img.copy()  # Create a copy to avoid modifying the original
    img[:, :, 0] += 103.939
    img[:, :, 1] += 116.779
    img[:, :, 2] += 123.68
    # Convert BGR to RGB
    img = img[:, :, ::-1]
    img = np.clip(img, 0, 255).astype('uint8')
    return img

# Gram matrix
def gram_matrix(A):
    channels = int(A.shape[-1])
    a = tf.reshape(A, [-1, channels])
    n = tf.shape(a)[0]
    gram = tf.matmul(a, a, transpose_a=True)
    return gram / tf.cast(n, tf.float32)

# Content loss
def content_loss(content, generated):
    a_C = content_model(content)
    a_G = content_model(generated)
    loss = tf.reduce_mean(tf.square(a_C - a_G))
    return loss

# Style loss
def style_cost(style, generated):
    J_style = 0
    for style_model in style_models:
        a_S = style_model(style)
        a_G = style_model(generated)
        GS = gram_matrix(a_S)
        GG = gram_matrix(a_G)
        current_cost = tf.reduce_mean(tf.square(GS - GG))
        J_style += current_cost * weight_of_layer
    return J_style

# Total Loss Function
def compute_total_loss(content, style, generated, alpha=10, beta=1000):
    J_content = content_loss(content, generated)
    J_style = style_cost(style, generated)
    return alpha * J_content + beta * J_style


def ensure_pil_image(img):
    if isinstance(img, np.ndarray):
        return Image.fromarray(img.astype('uint8'))
    return img


def neural_style_transfer(content_img, style_img, iterations=50, alpha=10, beta=1000):
    try:
        # Ensure we have PIL images
        content_img_pil = ensure_pil_image(content_img)
        style_img_pil = ensure_pil_image(style_img)

        # Resize images to a manageable size
        content_img_pil = content_img_pil.resize((300, 300), Image.LANCZOS)
        style_img_pil = style_img_pil.resize((300, 300), Image.LANCZOS)

        # Process images
        content = process_image(content_img_pil)
        style = process_image(style_img_pil)

        # Initialize with content image
        generated = tf.Variable(content, dtype=tf.float32)

        # Optimizer
        opt = tf.keras.optimizers.Adam(learning_rate=0.7)

        progress_images = []

        for i in range(iterations):
            with tf.GradientTape() as tape:
                total_loss = compute_total_loss(
                    content, style, generated, alpha, beta)

            # Get gradients and apply
            grads = tape.gradient(total_loss, generated)
            opt.apply_gradients([(grads, generated)])

            if i % 10 == 0 or i == iterations - 1:
                # Save progress image
                current_img = generated.numpy()
                img_squeezed = np.squeeze(current_img, axis=0)
                img_deprocessed = deprocess(img_squeezed)
                progress_images.append(Image.fromarray(img_deprocessed))

            print(f"Iteration {i}, Loss: {total_loss.numpy()}")

        # Get final image
        final_img = generated.numpy()
        final_img = np.squeeze(final_img, axis=0)
        final_img = deprocess(final_img)

        return Image.fromarray(final_img), progress_images
    except Exception as e:
        print(f"Error in neural_style_transfer: {e}")
        # Return a default error image
        error_img = Image.new('RGB', (300, 300), color='red')
        return error_img, []


def style_transfer_interface(content_img, style_img, iterations=50, content_weight=10, style_weight=1000):
    # Check if images are provided
    if content_img is None or style_img is None:
        return None

    # Perform style transfer
    result_img, _ = neural_style_transfer(
        content_img,
        style_img,
        iterations=iterations,
        alpha=content_weight,
        beta=style_weight
    )

    return result_img


# Example images
content_path = "content/images/content"
style_path = "content/styles/style"

example_content_1 = f"{content_path}1.jpg"
example_content_2 = f"{content_path}2.jpg"
example_content_3 = f"{content_path}3.jpg"
example_style_1 = f"{style_path}1.jpg"
example_style_2 = f"{style_path}2.jpg"
example_style_3 = f"{style_path}3.jpg"

examples = [
    [example_content_1, example_style_1, 10, 5, 1000],
    [example_content_2, example_style_2, 20, 10, 1500],
    [example_content_3, example_style_3, 50, 15, 2000],
]

with gr.Blocks(title="Neural Style Transfer") as app:
    gr.Markdown("# Neural Style Transfer App")
    gr.Markdown(
        "Upload a content image and a style image to generate a stylized result")

    with gr.Row():
        with gr.Column():
            content_input = gr.Image(label="Content Image", type="pil")
            style_input = gr.Image(label="Style Image", type="pil")

            with gr.Row():
                iterations_slider = gr.Slider(
                    minimum=10, maximum=100, value=50, step=10,
                    label="Iterations"
                )

            with gr.Row():
                content_weight_slider = gr.Slider(
                    minimum=1, maximum=20, value=10, step=1,
                    label="Content Weight"
                )
                style_weight_slider = gr.Slider(
                    minimum=500, maximum=2000, value=1000, step=100,
                    label="Style Weight"
                )

            submit_btn = gr.Button("Generate Stylized Image")

        with gr.Column():
            output_image = gr.Image(label="Stylized Result")

    gr.Examples(
        examples=examples,
        inputs=[content_input, style_input, iterations_slider,
                content_weight_slider, style_weight_slider],
        outputs=output_image,
        fn=style_transfer_interface,
        cache_examples=False,
    )

    submit_btn.click(
        fn=style_transfer_interface,
        inputs=[content_input, style_input, iterations_slider,
                content_weight_slider, style_weight_slider],
        outputs=output_image
    )

# Launch the app
if __name__ == "__main__":
    app.launch(share=True, debug=True)