Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from model import SentimentClassifier
|
5 |
+
|
6 |
+
model_state_dict = torch.load('sentiment_model.pth')
|
7 |
+
model = SentimentClassifier(2)
|
8 |
+
model.load_state_dict(model_state_dict)
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
12 |
+
|
13 |
+
|
14 |
+
def preprocess(text):
|
15 |
+
inputs = tokenizer(text, padding='max_length',
|
16 |
+
truncation=True, max_length=512, return_tensors='pt')
|
17 |
+
return inputs
|
18 |
+
# Define a function to use the model to make predictions
|
19 |
+
def predict():
|
20 |
+
review = request.form['review']
|
21 |
+
inputs = preprocess(review)
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(inputs['input_ids'], inputs['attention_mask'])
|
24 |
+
predicted_class = torch.argmax(outputs[0]).item()
|
25 |
+
if(predicted_class==0):
|
26 |
+
return "It was a negative review"
|
27 |
+
return "It was a positive review"
|
28 |
+
|
29 |
+
# Create a Gradio interface
|
30 |
+
input_text = gr.inputs.Textbox(label="Input Text")
|
31 |
+
output_text = gr.outputs.Textbox(label="Output Text")
|
32 |
+
interface = gr.Interface(fn=predict, inputs=input_text, outputs=output_text)
|
33 |
+
|
34 |
+
# Run the interface
|
35 |
+
interface.test_launch()
|