Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from transformers import BertModel | |
class SentimentClassifier(nn.Module): | |
def __init__(self, n_classes): | |
super(SentimentClassifier, self).__init__() | |
self.bert = BertModel.from_pretrained('bert-base-uncased') | |
self.drop = nn.Dropout(p=0.3) | |
self.out = nn.Linear(self.bert.config.hidden_size, n_classes) | |
def forward(self, input_ids, attention_mask): | |
_, pooled_output = self.bert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
return_dict=False | |
) | |
output = self.drop(pooled_output) | |
return self.out(output) | |