# Everything here goes into the app.py file # Define Gradio inference function # 15 March 2025 # Prakash Kota # East Greenbush import numpy as np import tensorflow as tf import os import gradio as gr import joblib # Fixed reactor parameters V = 100 # Reactor volume (L) k = 0.1 # Reaction rate constant (1/min) delta_H = -50000 # Heat of reaction (J/mol) rho = 1 # Density in kg/L Cp = 4184 # Heat capacity in J/kg·K # Define the model directory model_dir = "./model" # Define Gradio inference function def predict_cstr(CA_in, T_in, F): # Load scalers and model scaler_X = joblib.load(f"{model_dir}/scaler_X.pkl") scaler_Y = joblib.load(f"{model_dir}/scaler_Y.pkl") model = tf.keras.models.load_model(f"{model_dir}/cstr_model.keras") # Scale input input_scaled = scaler_X.transform([[CA_in, T_in, F]]) # Predict using the model prediction_scaled = model.predict(input_scaled) prediction_original = scaler_Y.inverse_transform(prediction_scaled) CA_ss_pred, T_ss_pred = prediction_original[0] # Compute analytical solution CA_ss_analytical = (CA_in * (F / V)) / ((F / V) + k) T_ss_analytical = T_in + ((-delta_H * k * CA_ss_analytical) / (rho * Cp)) * (V / F) # Compute % Error and % Accuracy for Concentration #percent_error_CA = abs((CA_ss_pred - CA_ss_analytical) / CA_ss_analytical) * 100 percent_accuracy_CA = (1 - abs(CA_ss_pred - CA_ss_analytical) / CA_ss_analytical) * 100 # Compute % Error and % Accuracy for Temperature #percent_error_T = abs((T_ss_pred - T_ss_analytical) / T_ss_analytical) * 100 percent_accuracy_T = (1 - abs(T_ss_pred - T_ss_analytical) / T_ss_analytical) * 100 return (f"Predicted CA_ss: {CA_ss_pred:.4f} mol/L\n" f"Predicted T_ss: {T_ss_pred:.2f} K\n" f"\n" f"Analytical CA_ss: {CA_ss_analytical:.4f} mol/L\n" f"Analytical T_ss: {T_ss_analytical:.2f} K\n" f"\n" f"Accuracy\n" f"% Concentration Accuracy: {percent_accuracy_CA:.2f}%\n" f"% Temperature Accuracy: {percent_accuracy_T:.2f}%\n") # Deploy using Gradio iface = gr.Interface( fn=predict_cstr, inputs=[ gr.Number(label="Input Concentration CA_in - Range [0.5-2.0] mol/L"), gr.Number(label="Input Temperature T_in - Range [300-350] K"), gr.Number(label="CSTR Flow Rate F - Range [5-20] L/min") ], outputs="text", title="CSTR Surrogate Model Inference", description="Enter the input values to predict steady-state concentration and temperature." ) # Add the Markdown footer with a clickable hyperlink footer = gr.Markdown( 'For details about the model, please see the article - ' '[Bringing Historical Process Data to Life: Unlocking AI’s Goldmine with Neural Networks for Smarter Manufacturing](https://prakashkota.com/2025/03/16/bringing-historical-process-data-to-life-unlocking-ais-goldmine-with-neural-networks-for-smarter-manufacturing/)' ) # Launch the interface with the footer with gr.Blocks() as demo: iface.render() footer.render() # Ensure the app launches when executed if __name__ == "__main__": demo.launch(share=True)