#+--------------------------------------------------------------------------------------------+ | |
# Breast Cancer Prediction | |
# Using Neural Networks and Tensorflow | |
# Prediction using Gradio on Hugging Face | |
# Written by: Prakash R. Kota | |
# Written on: 12 Feb 2025 | |
# Last update: 12 Feb 2025 | |
# Data Set from | |
# Original: | |
# https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic | |
# With Header: | |
# https://www.kaggle.com/code/nancyalaswad90/analysis-breast-cancer-prediction-dataset | |
# | |
# Input Data Format for Gradio must be in the above header format with 30 features | |
# The header has 32 features listed, but ignore the first 2 header columns | |
#+--------------------------------------------------------------------------------------------+ | |
import tensorflow as tf | |
import numpy as np | |
import gradio as gr | |
import joblib | |
# Load the trained model | |
model = tf.keras.models.load_model("PRK_BC_NN_Model.keras") | |
# Load the saved Scaler | |
scaler = joblib.load("PRK_BC_NN_Scaler.pkl") | |
# Function to process input and make predictions | |
def predict(input_text): | |
# Convert input string into a NumPy array of shape (1, 30) | |
input_data = np.array([list(map(float, input_text.split(",")))]) | |
# Ensure the input shape is correct | |
if input_data.shape != (1, 30): | |
return "Error: Please enter exactly 30 numerical values separated by commas." | |
# Transform the input data using the loded scaler | |
input_data_scaled = scaler.transform(input_data) | |
# Make a prediction | |
prediction = model.predict(input_data_scaled) | |
# Convert prediction to a binary outcome (assuming classification) | |
result = "Malignant" if prediction[0][0] > 0.5 else "Benign" | |
return f"Prediction: {result} (Confidence: {prediction[0][0]:.2f})" | |
import gradio as gr | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(label="Enter 30 feature values, comma-separated"), | |
outputs="text", | |
title="Breast Cancer Prediction", | |
description="Enter 30 numerical feature values separated by commas to predict whether the biopsy is Malignant or Benign." | |
) | |
# Launch the Gradio app | |
interface.launch() | |