pradeepsengarr commited on
Commit
f5ebd9b
·
verified ·
1 Parent(s): ce06edf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import faiss
3
+ import numpy as np
4
+ from sentence_transformers import SentenceTransformer
5
+
6
+ # Load resume data
7
+ resume_data = {
8
+ "name": "Pradeep Singh Sengar",
9
+ "linkedin": "www.linkedin.com/in/ipradeepsengarr",
10
+ "email": "[email protected]",
11
+ "github": "github.com/pradeepsengar",
12
+ "mobile": "+91-7898367211",
13
+ "education": "Bachelor of Engineering (Hons.) - Information Technology; CGPA: 8.31 (Oriental College Of Technology, Bhopal, 2019-2023)",
14
+ "skills": "Python, HTML/CSS, Django, Reactjs, Node.js, Git, Web Scraping, Generative AI, Machine Learning (LLM)",
15
+ "experience": "Graduate Engineer Trainee at Jio Platform Limited (Dec. 2023 - Present). Implemented chatbots with Docker, used Git/GitHub, worked with LLM concepts and Hugging Face.",
16
+ "projects": "Room Rental System, Text to Image Generator, Fitness Tracker, Movie Recommendation System",
17
+ "honors_awards": "Qualified for Round 1B of SnackDown (CodeChef), Startup Challenge (Top 10 teams)",
18
+ "certifications": "Web Development (Internshala), The Complete Python Pro Bootcamp (Udemy), Data Science (LinkedIn Learning), Web Scraping (LinkedIn Learning)"
19
+ }
20
+
21
+ # Convert data to list of sentences for retrieval
22
+ resume_values = list(resume_data.values())
23
+
24
+ # Load embedding model
25
+ model = SentenceTransformer('all-MiniLM-L6-v2')
26
+ embeddings = model.encode(resume_values)
27
+
28
+ # Store embeddings in FAISS index
29
+ index = faiss.IndexFlatL2(embeddings.shape[1])
30
+ index.add(np.array(embeddings))
31
+
32
+ def get_response(query):
33
+ query_embedding = model.encode([query])
34
+ D, I = index.search(query_embedding, 1)
35
+ return resume_values[I[0][0]]
36
+
37
+ # Streamlit UI
38
+ st.title("📝 Resume Chatbot")
39
+ st.write("Ask anything about Pradeep's resume!")
40
+
41
+ user_input = st.text_input("Your question:")
42
+ if user_input:
43
+ response = get_response(user_input)
44
+ st.success(f"**Answer:** {response}")