Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,36 +3,28 @@ import faiss
|
|
3 |
import numpy as np
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
|
6 |
-
# Load resume data
|
7 |
resume_data = {
|
8 |
-
"
|
9 |
-
"
|
10 |
-
"
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
}
|
19 |
|
20 |
-
#
|
21 |
-
suggested_questions = [
|
22 |
-
"What are your key skills?",
|
23 |
-
"Tell me about your work experience?",
|
24 |
-
"What projects have you worked on?",
|
25 |
-
"What certifications do you have?",
|
26 |
-
"How can I contact you?",
|
27 |
-
]
|
28 |
-
|
29 |
-
# Convert resume data to list for embedding
|
30 |
resume_keys = list(resume_data.keys())
|
31 |
resume_values = list(resume_data.values())
|
32 |
|
33 |
# Load embedding model
|
34 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
35 |
-
embeddings = model.encode(
|
36 |
|
37 |
# Store embeddings in FAISS index
|
38 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
@@ -41,28 +33,43 @@ index.add(np.array(embeddings))
|
|
41 |
def get_response(query):
|
42 |
query_embedding = model.encode([query])
|
43 |
D, I = index.search(query_embedding, 1)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
48 |
|
49 |
# Streamlit UI
|
50 |
-
st.
|
51 |
-
st.
|
52 |
-
st.write("Ask me anything about my resume or pick a question below:")
|
53 |
|
54 |
-
# Suggested
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
for i, question in enumerate(suggested_questions):
|
57 |
-
if
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
|
|
63 |
if user_input:
|
64 |
-
|
65 |
-
|
66 |
-
st.success(f"**{key}:** {response} (Confidence: {confidence}%)")
|
67 |
-
else:
|
68 |
-
st.warning("I'm not sure about this. Can you ask in a different way?")
|
|
|
3 |
import numpy as np
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
|
6 |
+
# Load resume data
|
7 |
resume_data = {
|
8 |
+
"name": "Pradeep Singh Sengar",
|
9 |
+
"linkedin": "www.linkedin.com/in/ipradeepsengarr",
|
10 |
+
"email": "[email protected]",
|
11 |
+
"github": "github.com/pradeepsengar",
|
12 |
+
"mobile": "+91-7898367211",
|
13 |
+
"education": "Bachelor of Engineering (Hons.) - Information Technology; CGPA: 8.31 (Oriental College Of Technology, Bhopal, 2019-2023)",
|
14 |
+
"skills": "Python, HTML/CSS, Django, Reactjs, Node.js, Git, Web Scraping, Generative AI, Machine Learning (LLM)",
|
15 |
+
"experience": "Graduate Engineer Trainee at Jio Platform Limited (Dec. 2023 - Present). Implemented chatbots with Docker, used Git/GitHub, worked with LLM concepts and Hugging Face.",
|
16 |
+
"projects": "Room Rental System, Text to Image Generator, Fitness Tracker, Movie Recommendation System",
|
17 |
+
"honors_awards": "Qualified for Round 1B of SnackDown (CodeChef), Startup Challenge (Top 10 teams)",
|
18 |
+
"certifications": "Web Development (Internshala), The Complete Python Pro Bootcamp (Udemy), Data Science (LinkedIn Learning), Web Scraping (LinkedIn Learning)"
|
19 |
}
|
20 |
|
21 |
+
# Convert data to list of sentences for retrieval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
resume_keys = list(resume_data.keys())
|
23 |
resume_values = list(resume_data.values())
|
24 |
|
25 |
# Load embedding model
|
26 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
27 |
+
embeddings = model.encode(resume_values)
|
28 |
|
29 |
# Store embeddings in FAISS index
|
30 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
|
|
33 |
def get_response(query):
|
34 |
query_embedding = model.encode([query])
|
35 |
D, I = index.search(query_embedding, 1)
|
36 |
+
confidence = 1 - D[0][0] / 10 # Normalize confidence score
|
37 |
+
|
38 |
+
if confidence > 0.5:
|
39 |
+
return f"**{resume_keys[I[0][0]].capitalize()}**: {resume_values[I[0][0]]} \n\n *(Confidence: {confidence:.2f})*"
|
40 |
+
else:
|
41 |
+
return "I'm not sure about this. Please try asking differently or be more specific."
|
42 |
|
43 |
# Streamlit UI
|
44 |
+
st.title("📝 Resume Chatbot")
|
45 |
+
st.write("Ask anything about Pradeep's resume!")
|
|
|
46 |
|
47 |
+
# Suggested Questions
|
48 |
+
suggested_questions = [
|
49 |
+
"What is your name?",
|
50 |
+
"What is your LinkedIn profile?",
|
51 |
+
"What skills do you have?",
|
52 |
+
"Tell me about your experience?",
|
53 |
+
"What are your certifications?",
|
54 |
+
"List your projects."
|
55 |
+
]
|
56 |
+
|
57 |
+
st.write("### Quick Questions")
|
58 |
+
col1, col2 = st.columns(2)
|
59 |
for i, question in enumerate(suggested_questions):
|
60 |
+
if i % 2 == 0:
|
61 |
+
with col1:
|
62 |
+
if st.button(question, key=f"btn_{i}"):
|
63 |
+
st.session_state["user_input"] = question
|
64 |
+
st.rerun()
|
65 |
+
else:
|
66 |
+
with col2:
|
67 |
+
if st.button(question, key=f"btn_{i}"):
|
68 |
+
st.session_state["user_input"] = question
|
69 |
+
st.rerun()
|
70 |
|
71 |
+
# User Input & Response
|
72 |
+
user_input = st.text_input("Your question:", value=st.session_state.get("user_input", ""))
|
73 |
if user_input:
|
74 |
+
response = get_response(user_input)
|
75 |
+
st.success(response)
|
|
|
|
|
|