Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Agentic AI Bot using Mistral-7B-Instruct-v0.1 with Text & Speech (Streamlit App)
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
+
from gtts import gTTS
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
+
import speech_recognition as sr
|
10 |
+
import soundfile as sf
|
11 |
+
import io
|
12 |
+
|
13 |
+
st.set_page_config(page_title="🧠 Agentic AI Bot", layout="centered")
|
14 |
+
st.title("🎙️ Agentic AI Assistant (Text + Voice)")
|
15 |
+
|
16 |
+
# Load model and tokenizer
|
17 |
+
@st.cache_resource
|
18 |
+
def load_model():
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
22 |
+
device_map="auto",
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
load_in_4bit=True
|
25 |
+
)
|
26 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
27 |
+
return pipe
|
28 |
+
|
29 |
+
pipe = load_model()
|
30 |
+
|
31 |
+
# Text-to-speech function
|
32 |
+
def speak(text):
|
33 |
+
tts = gTTS(text)
|
34 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
35 |
+
tts.save(fp.name)
|
36 |
+
return fp.name
|
37 |
+
|
38 |
+
# Speech-to-text function
|
39 |
+
def transcribe(audio_bytes):
|
40 |
+
recognizer = sr.Recognizer()
|
41 |
+
with sr.AudioFile(io.BytesIO(audio_bytes)) as source:
|
42 |
+
audio_data = recognizer.record(source)
|
43 |
+
try:
|
44 |
+
return recognizer.recognize_google(audio_data)
|
45 |
+
except sr.UnknownValueError:
|
46 |
+
return "Sorry, I could not understand the audio."
|
47 |
+
except sr.RequestError:
|
48 |
+
return "Speech recognition service is unavailable."
|
49 |
+
|
50 |
+
# Input mode selection
|
51 |
+
mode = st.radio("Choose input mode:", ["Text", "Voice"])
|
52 |
+
|
53 |
+
user_input = ""
|
54 |
+
if mode == "Text":
|
55 |
+
user_input = st.text_input("Enter your query:")
|
56 |
+
else:
|
57 |
+
audio = st.file_uploader("Upload your voice (WAV format only)", type=["wav"])
|
58 |
+
if audio is not None:
|
59 |
+
audio_bytes = audio.read()
|
60 |
+
user_input = transcribe(audio_bytes)
|
61 |
+
st.write(f"You said: {user_input}")
|
62 |
+
|
63 |
+
# Run the assistant
|
64 |
+
if user_input:
|
65 |
+
with st.spinner("Thinking..."):
|
66 |
+
result = pipe(user_input, max_new_tokens=200, temperature=0.7, do_sample=True)
|
67 |
+
response = result[0]['generated_text']
|
68 |
+
|
69 |
+
# Trim prompt from response if repeated
|
70 |
+
if response.lower().startswith(user_input.lower()):
|
71 |
+
response = response[len(user_input):].strip()
|
72 |
+
|
73 |
+
st.subheader("🤖 Assistant's Response:")
|
74 |
+
st.write(response)
|
75 |
+
|
76 |
+
# Speak response
|
77 |
+
audio_path = speak(response)
|
78 |
+
st.audio(audio_path, format="audio/mp3")
|
79 |
+
|
80 |
+
# Cleanup
|
81 |
+
os.remove(audio_path)
|