import os import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import login # Load Hugging Face Token from Secrets hf_token = os.getenv("HF_TOKEN") if not hf_token: st.error("Hugging Face token is missing! Please add it to Hugging Face Secrets.") st.stop() # Authenticate login(token=hf_token) # Load the model and tokenizer with authentication MODEL_NAME = "google/gemma-2b-it" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=hf_token, torch_dtype=torch.float16, device_map="auto") # Streamlit UI st.title("Gemma-2B Code Assistant") user_input = st.text_area("Enter your coding query:") if st.button("Generate Code"): if user_input: inputs = tokenizer(user_input, return_tensors="pt").to("cuda") output = model.generate(**inputs, max_new_tokens=100) response = tokenizer.decode(output[0], skip_special_tokens=True) st.write(response) else: st.warning("Please enter a query!")