import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForCausalLM import os # Load Hugging Face Token from environment variable hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") if hf_token is None: st.error("❌ Hugging Face API Token is missing! Add it in Settings → Secrets.") st.stop() # Model name MODEL_NAME = "google/gemma-2b-it" # Load tokenizer and model with authentication tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=hf_token) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto", use_auth_token=hf_token) # Streamlit UI st.title("Gemma-2B Code Assistant") user_input = st.text_area("Enter your coding query:") if st.button("Generate Code"): if user_input: inputs = tokenizer(user_input, return_tensors="pt").to("cuda") output = model.generate(**inputs, max_new_tokens=100) response = tokenizer.decode(output[0], skip_special_tokens=True) st.write(response) else: st.warning("Please enter a query!")