Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,6 @@
|
|
33 |
# st.warning("Please enter a query!")
|
34 |
|
35 |
|
36 |
-
|
37 |
import os
|
38 |
import streamlit as st
|
39 |
import torch
|
@@ -52,7 +51,9 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
52 |
# Load the model and tokenizer with token authentication
|
53 |
MODEL_NAME = "google/gemma-2b-it"
|
54 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
|
55 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
56 |
|
57 |
# Streamlit UI
|
58 |
st.title("Gemma-2B Code Assistant")
|
@@ -60,10 +61,12 @@ user_input = st.text_area("Enter your coding query:")
|
|
60 |
|
61 |
if st.button("Generate Code"):
|
62 |
if user_input:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
else:
|
68 |
-
st.warning("Please enter a query!")
|
69 |
-
|
|
|
33 |
# st.warning("Please enter a query!")
|
34 |
|
35 |
|
|
|
36 |
import os
|
37 |
import streamlit as st
|
38 |
import torch
|
|
|
51 |
# Load the model and tokenizer with token authentication
|
52 |
MODEL_NAME = "google/gemma-2b-it"
|
53 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
MODEL_NAME, token=hf_token, torch_dtype=torch.float16 if device == "cuda" else torch.float32, device_map="auto"
|
56 |
+
)
|
57 |
|
58 |
# Streamlit UI
|
59 |
st.title("Gemma-2B Code Assistant")
|
|
|
61 |
|
62 |
if st.button("Generate Code"):
|
63 |
if user_input:
|
64 |
+
with st.spinner("⏳ Generating response... Please wait!"):
|
65 |
+
inputs = tokenizer(user_input, return_tensors="pt").to(device)
|
66 |
+
output = model.generate(**inputs, max_new_tokens=100)
|
67 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
68 |
+
|
69 |
+
st.subheader("📝 Generated Code:")
|
70 |
+
st.code(response, language="python") # Display code properly
|
71 |
else:
|
72 |
+
st.warning("⚠️ Please enter a query!")
|
|