Bot_RAG / app.py
pradeepsengarr's picture
Update app.py
8d47fc3 verified
raw
history blame
20.4 kB
# import os
# import logging
# import math
# import streamlit as st
# import fitz # PyMuPDF
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from langchain_community.document_loaders import PDFMinerLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# # Define global variables
# device = 'cpu'
# persist_directory = "db"
# uploaded_files_dir = "uploaded_files"
# # Streamlit app configuration
# st.set_page_config(page_title="Audit Assistant", layout="wide")
# st.title("Audit Assistant")
# # Load the model
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# # Helper Functions
# def extract_text_from_pdf(file_path):
# """Extract text from a PDF using PyMuPDF (fitz)."""
# try:
# doc = fitz.open(file_path)
# text = ""
# for page_num in range(doc.page_count):
# page = doc.load_page(page_num)
# text += page.get_text("text")
# return text
# except Exception as e:
# logging.error(f"Error reading PDF {file_path}: {e}")
# return None
# def data_ingestion():
# """Function to load PDFs and create embeddings with improved error handling and efficiency."""
# try:
# logging.info("Starting data ingestion")
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# documents = []
# for filename in os.listdir(uploaded_files_dir):
# if filename.endswith(".pdf"):
# file_path = os.path.join(uploaded_files_dir, filename)
# logging.info(f"Processing file: {file_path}")
# try:
# loader = PDFMinerLoader(file_path)
# loaded_docs = loader.load()
# if not loaded_docs:
# logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
# continue
# for doc in loaded_docs:
# if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
# documents.append(doc)
# else:
# logging.warning(f"Skipping invalid document structure in {file_path}")
# except ValueError as e:
# logging.error(f"Skipping {file_path}: {str(e)}")
# continue
# if not documents:
# logging.error("No valid documents found to process.")
# return
# logging.info(f"Total valid documents: {len(documents)}")
# # Proceed with splitting and embedding documents
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# texts = text_splitter.split_documents(documents)
# logging.info(f"Total text chunks created: {len(texts)}")
# if not texts:
# logging.error("No valid text chunks to create embeddings.")
# return
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# # Proceed to split and embed the documents
# MAX_BATCH_SIZE = 5461
# total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
# logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
# db = None
# for i in range(total_batches):
# batch_start = i * MAX_BATCH_SIZE
# batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
# text_batch = texts[batch_start:batch_end]
# logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
# if db is None:
# db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
# else:
# db.add_documents(text_batch)
# db.persist()
# logging.info("Data ingestion completed successfully")
# except Exception as e:
# logging.error(f"Error during data ingestion: {str(e)}")
# raise
# def llm_pipeline():
# """Set up the language model pipeline."""
# logging.info("Setting up LLM pipeline")
# pipe = pipeline(
# 'text2text-generation',
# model=base_model,
# tokenizer=tokenizer,
# max_length=256,
# do_sample=True,
# temperature=0.3,
# top_p=0.95,
# device=device
# )
# local_llm = HuggingFacePipeline(pipeline=pipe)
# logging.info("LLM pipeline setup complete")
# return local_llm
# def qa_llm():
# """Set up the question-answering chain."""
# logging.info("Setting up QA model")
# llm = llm_pipeline()
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# retriever = db.as_retriever() # Set up the retriever for the vector store
# qa = RetrievalQA.from_chain_type(
# llm=llm,
# chain_type="stuff",
# retriever=retriever,
# return_source_documents=True
# )
# logging.info("QA model setup complete")
# return qa
# def process_answer(user_question):
# """Generate an answer to the user’s question."""
# try:
# logging.info("Processing user question")
# qa = qa_llm()
# tailored_prompt = f"""
# You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits.
# Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures,
# and accounting standards based on the provided PDF documents.
# Please respond effectively and refer to the relevant standards and policies whenever applicable.
# User question: {user_question}
# """
# generated_text = qa({"query": tailored_prompt})
# answer = generated_text['result']
# if "not provide" in answer or "no information" in answer:
# return "The document does not provide sufficient information to answer your question."
# logging.info("Answer generated successfully")
# return answer
# except Exception as e:
# logging.error(f"Error during answer generation: {str(e)}")
# return "Error processing the question."
# # Streamlit UI Setup
# st.sidebar.header("File Upload")
# uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
# if uploaded_files:
# # Save uploaded files
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# for uploaded_file in uploaded_files:
# file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
# with open(file_path, "wb") as f:
# f.write(uploaded_file.getbuffer())
# st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
# # Run data ingestion when files are uploaded
# data_ingestion()
# # Display UI for Q&A
# st.header("Ask a Question")
# user_question = st.text_input("Enter your question here:")
# if user_question:
# answer = process_answer(user_question)
# st.write(answer)
# else:
# st.sidebar.info("Upload PDF files to get started!")
# # -------this is the second code!!!
# import os
# import logging
# import math
# import streamlit as st
# import fitz # PyMuPDF
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# # from langchain_community.document_loaders import PDFMinerLoader
# from langchain_community.document_loaders import PyMuPDFLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# device = 'cpu'
# persist_directory = "db"
# uploaded_files_dir = "uploaded_files"
# logging.basicConfig(level=logging.INFO)
# # for main Page Setup
# st.set_page_config(page_title="RAG Chatbot", layout="wide")
# st.title("πŸ“š RAG-based PDF Assistant")
# # Load my model
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# # ------------------------------- #
# def extract_outline_from_pdf(path):
# try:
# doc = fitz.open(path)
# outline_text = ""
# for page_num in range(len(doc)):
# page = doc[page_num]
# outline_text += f"### Page {page_num+1}:\n{page.get_text('text')[:500]}\n---\n"
# return outline_text if outline_text else "No preview available."
# except Exception as e:
# return f"Could not preview PDF: {e}"
# def data_ingestion():
# """Load PDFs, validate content, and generate embeddings."""
# try:
# logging.info("Starting data ingestion")
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# documents = []
# for filename in os.listdir(uploaded_files_dir):
# if filename.endswith(".pdf"):
# file_path = os.path.join(uploaded_files_dir, filename)
# logging.info(f"Processing file: {file_path}")
# try:
# loader = PyMuPDFLoader(file_path)
# loaded_docs = loader.load()
# # Check if any content exists in loaded_docs
# if not loaded_docs or len(loaded_docs[0].page_content.strip()) == 0:
# logging.warning(f"No readable text found in {file_path}. Might be a scanned image or unsupported format.")
# continue
# for doc in loaded_docs:
# if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
# documents.append(doc)
# else:
# logging.warning(f"Skipping invalid document structure in {file_path}")
# except Exception as e:
# logging.error(f"Skipping {file_path}: {str(e)}")
# continue
# if not documents:
# logging.error("No valid documents found to process.")
# return
# logging.info(f"Total valid documents: {len(documents)}")
# # Proceed with splitting and embedding documents
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# texts = text_splitter.split_documents(documents)
# logging.info(f"Total text chunks created: {len(texts)}")
# if not texts:
# logging.error("No valid text chunks to create embeddings.")
# return
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# MAX_BATCH_SIZE = 5461
# total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
# logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
# db = None
# for i in range(total_batches):
# batch_start = i * MAX_BATCH_SIZE
# batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
# text_batch = texts[batch_start:batch_end]
# logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
# if db is None:
# db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
# else:
# db.add_documents(text_batch)
# db.persist()
# logging.info("Data ingestion completed successfully")
# except Exception as e:
# logging.error(f"Error during data ingestion: {str(e)}")
# raise
# def llm_pipeline():
# pipe = pipeline(
# 'text2text-generation',
# model=base_model,
# tokenizer=tokenizer,
# max_length=256,
# do_sample=True,
# temperature=0.3,
# top_p=0.95,
# device=device
# )
# return HuggingFacePipeline(pipeline=pipe)
# def qa_llm():
# llm = llm_pipeline()
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# retriever = db.as_retriever()
# return RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
# def process_answer(user_question):
# """Generate an answer to the user’s question using a general RAG-based prompt."""
# try:
# logging.info("Processing user question")
# qa = qa_llm() # Set up the retrieval-based QA chain
# # Generalized, flexible prompt for any kind of PDF (resume, legal doc, etc.)
# tailored_prompt = f"""
# You are an intelligent and helpful AI assistant that provides answers strictly based on the provided document contents.
# If the question cannot be answered using the documents, say: 'The document does not contain this information.'
# Otherwise, respond clearly and concisely with relevant and factual details from the PDF.
# Question: {user_question}
# """
# generated_text = qa({"query": tailored_prompt})
# answer = generated_text['result']
# # Add a safeguard for hallucinated answers
# if "not provide" in answer.lower() or "no information" in answer.lower() or len(answer.strip()) < 10:
# return "The document does not contain this information."
# logging.info("Answer generated successfully")
# return answer
# except Exception as e:
# logging.error(f"Error during answer generation: {str(e)}")
# return "Sorry, something went wrong while processing your question."
# # ---------------- STREAMLIT UI ---------------- #
# # Sidebar Upload
# st.sidebar.header("πŸ“€ Upload PDF Files")
# uploaded_files = st.sidebar.file_uploader("Select one or more PDF files", type="pdf", accept_multiple_files=True)
# if uploaded_files:
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# for file in uploaded_files:
# path = os.path.join(uploaded_files_dir, file.name)
# with open(path, "wb") as f:
# f.write(file.getbuffer())
# st.sidebar.success(f"{len(uploaded_files)} file(s) uploaded.")
# # Display previews
# st.subheader("πŸ“„ Uploaded PDF Previews")
# for file in uploaded_files:
# with st.expander(file.name):
# st.text(extract_outline_from_pdf(os.path.join(uploaded_files_dir, file.name)))
# # Trigger ingestion
# with st.spinner("πŸ”„ Ingesting uploaded documents..."):
# data_ingestion()
# # Ask a question
# st.header("❓ Ask a Question from Your Documents")
# user_input = st.text_input("Enter your question:")
# if user_input:
# with st.spinner("πŸ’¬ Generating response..."):
# response = process_answer(user_input)
# st.success(response)
# else:
# st.sidebar.info("Upload PDFs to begin your QA journey.")
import os
import streamlit as st
import fitz # PyMuPDF
import tempfile
import shutil
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import TextLoader
from langchain.docstore.document import Document
# --- Streamlit Config ---
st.set_page_config(page_title="πŸ“š RAG PDF Chatbot", layout="wide")
st.title("πŸ“š RAG-based PDF Chatbot")
# --- Logging ---
logging.basicConfig(level=logging.INFO)
# --- Load LLM Model ---
@st.cache_resource
def load_llm():
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512)
return HuggingFacePipeline(pipeline=pipe)
# --- PDF Text Extraction ---
def extract_text_from_pdf(file):
try:
doc = fitz.open(stream=file.read(), filetype="pdf")
full_text = ""
for page in doc:
full_text += page.get_text()
return full_text.strip()
except Exception as e:
logging.error(f"Error reading PDF: {e}")
return ""
# --- Build Vectorstore ---
def create_vectorstore(text_chunks, embeddings):
temp_dir = os.path.join(tempfile.gettempdir(), "chroma_db")
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir, exist_ok=True)
# Wrap each chunk in a Document object
documents = [Document(page_content=chunk) for chunk in text_chunks]
db = Chroma.from_documents(documents, embedding=embeddings, persist_directory=temp_dir)
db.persist()
return db
# --- Smart Chunking ---
def chunk_text(full_text):
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=150,
separators=["\n\n", "\n", ".", "!", "?", " ", ""]
)
return splitter.split_text(full_text)
# --- Answering Logic ---
def process_question(question, full_text):
if not full_text:
return "No valid text extracted from PDF."
text_chunks = chunk_text(full_text)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectorstore = create_vectorstore(text_chunks, embeddings)
retriever = vectorstore.as_retriever()
llm = load_llm()
qa = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
return_source_documents=False,
chain_type_kwargs={
"prompt": f"""You are a helpful assistant. Answer the user's question based only on the provided document content.
If the answer is clearly stated in the document, respond accurately and directly.
If not, say "The document does not provide enough information." Do not make things up.
Question: {question}
Context: {{context}}
Answer:"""
}
)
return qa.run(question)
# --- Streamlit UI ---
with st.sidebar:
st.header("πŸ“„ Upload PDF")
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
if uploaded_file:
st.success(f"Uploaded: {uploaded_file.name}")
full_text = extract_text_from_pdf(uploaded_file)
if full_text:
st.subheader("πŸ“ PDF Preview")
with st.expander("πŸ“ View Extracted Text"):
st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))
st.subheader("πŸ’¬ Ask your question")
user_question = st.text_input("Enter your question about the PDF")
if user_question:
with st.spinner("πŸ€– Generating Answer..."):
answer = process_question(user_question, full_text)
st.markdown("### πŸ€– Answer")
st.write(answer)
with st.sidebar:
st.markdown("---")
st.markdown("**πŸ’‘ Suggestions:**")
st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"")
st.markdown("""
- "Summarize this document"
- "What is the background of Pradeep Singh Sengar?"
- "What experience does he have?"
- "List key skills mentioned in the document."
""")
else:
st.error("❌ No extractable text found in this PDF. Try another file.")
else:
st.info("Upload a PDF to begin.")