Spaces:
Sleeping
Sleeping
File size: 7,604 Bytes
c46f62c 948c6d1 c46f62c 948c6d1 c46f62c 948c6d1 c46f62c 948c6d1 c46f62c 948c6d1 0b64652 c46f62c cd88a48 9dd6815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# import os
# import streamlit as st
# import fitz # PyMuPDF
# import logging
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.vectorstores import Chroma
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# from langchain.prompts import PromptTemplate
# from langchain_community.document_loaders import TextLoader
# # --- Configuration ---
# st.set_page_config(page_title="π RAG PDF Chatbot", layout="wide")
# st.title("π RAG-based PDF Chatbot")
# device = "cpu"
# # --- Logging ---
# logging.basicConfig(level=logging.INFO)
# # --- Load LLM ---
# @st.cache_resource
# def load_model():
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, max_length=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
# return HuggingFacePipeline(pipeline=pipe)
# # --- Extract PDF Text ---
# def read_pdf(file):
# try:
# doc = fitz.open(stream=file.read(), filetype="pdf")
# text = ""
# for page in doc:
# text += page.get_text()
# return text.strip()
# except Exception as e:
# logging.error(f"Failed to extract text: {e}")
# return ""
# # --- Process Answer ---dd
# def process_answer(question, full_text):
# # Save the full_text to a temporary file
# with open("temp_text.txt", "w") as f:
# f.write(full_text)
# loader = TextLoader("temp_text.txt")
# docs = loader.load()
# # Chunk the documents with increased size and overlap
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=300)
# splits = text_splitter.split_documents(docs)
# # Load embeddings
# embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-base-en-v1.5")
# # Create Chroma in-memory vector store
# db = Chroma.from_documents(splits, embedding=embeddings)
# retriever = db.as_retriever()
# # Set up the model
# llm = load_model()
# # Create a custom prompt
# prompt_template = PromptTemplate(
# input_variables=["context", "question"],
# template="""
# You are a helpful assistant. Carefully analyze the given context and extract direct answers ONLY from it.
# Context:
# {context}
# Question:
# {question}
# Important Instructions:
# - If the question asks for a URL (e.g., LinkedIn link), provide the exact URL as it appears.
# - Do NOT summarize or paraphrase.
# - If the information is not in the context, say "Not found in the document."
# Answer:
# """)
# # Retrieval QA with custom prompt
# qa_chain = RetrievalQA.from_chain_type(
# llm=llm,
# retriever=retriever,
# chain_type="stuff",
# chain_type_kwargs={"prompt": prompt_template}
# )
# # Return the answer using the retrieval QA chain
# return qa_chain.run(question)
# # --- UI Layout ---
# with st.sidebar:
# st.header("π Upload PDF")
# uploaded_file = st.file_uploader("Choose a PDF", type=["pdf"])
# # --- Main Interface ---
# if uploaded_file:
# st.success(f"You uploaded: {uploaded_file.name}")
# full_text = read_pdf(uploaded_file)
# if full_text:
# st.subheader("π PDF Preview")
# with st.expander("View Extracted Text"):
# st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))
# st.subheader("π¬ Ask a Question")
# user_question = st.text_input("Type your question about the PDF content")
# if user_question:
# with st.spinner("Thinking..."):
# answer = process_answer(user_question, full_text)
# st.markdown("### π€ Answer")
# st.write(answer)
# with st.sidebar:
# st.markdown("---")
# st.markdown("**π‘ Suggestions:**")
# st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"")
# with st.expander("π‘ Suggestions", expanded=True):
# st.markdown("""
# - "Summarize this document"
# - "Give a quick summary"
# - "What are the main points?"
# - "Explain this document in short"
# """)
# else:
# st.error("β οΈ No text could be extracted from the PDF. Try another file.")
# else:
# st.info("Upload a PDF to begin.")
import streamlit as st
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFaceHub
import tempfile
import os
# Constants
EMBEDDING_MODEL_NAME = "BAAI/bge-base-en-v1.5"
LLM_MODEL_REPO = "mistralai/Mistral-7B-Instruct-v0.1"
CHUNK_SIZE = 500
CHUNK_OVERLAP = 300
# Load and split documents
def load_and_split_pdf(pdf_file):
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(pdf_file.read())
tmp_file_path = tmp_file.name
loader = PyPDFLoader(tmp_file_path)
documents = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
chunks = splitter.split_documents(documents)
return chunks
# Create FAISS vectorstore
def build_vectorstore(chunks):
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
db = FAISS.from_documents(chunks, embedding=embeddings)
return db
# Initialize LLM from Hugging Face Hub
def get_llm():
return HuggingFaceHub(
repo_id=LLM_MODEL_REPO,
model_kwargs={"temperature": 0.3, "max_new_tokens": 512, "top_k": 10}
)
# Custom prompt for better accuracy
CUSTOM_PROMPT = """
You are a professional resume chatbot. Use the context below to accurately and concisely answer the user's question. If the information is not available in the context, say "Not found in the document.".
Context:
{context}
Question:
{question}
Answer:
"""
# Build QA chain
def build_qa_chain(vectorstore):
return RetrievalQA.from_chain_type(
llm=get_llm(),
retriever=vectorstore.as_retriever(),
chain_type="stuff",
chain_type_kwargs={
"prompt": CUSTOM_PROMPT
}
)
# Streamlit UI
def main():
st.set_page_config(page_title="Resume Q&A Bot", layout="wide")
st.title("Resume Chatbot - Ask Anything About the Uploaded PDF")
uploaded_file = st.file_uploader("Upload your resume (PDF)", type="pdf")
if uploaded_file is not None:
st.success("PDF uploaded successfully!")
with st.spinner("Processing document and creating knowledge base..."):
chunks = load_and_split_pdf(uploaded_file)
vectorstore = build_vectorstore(chunks)
qa_chain = build_qa_chain(vectorstore)
st.success("Knowledge base ready! Ask your question below:")
question = st.text_input("Your Question:")
if question:
with st.spinner("Generating answer..."):
response = qa_chain.run(question)
st.markdown(f"**Answer:** {response}")
if __name__ == '__main__':
main()
|