Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
from gtts import gTTS
|
5 |
+
import os
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
# Load YOLOv8 model
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
return YOLO('yolov8n.pt') # Automatically downloads YOLOv8 pre-trained model
|
12 |
+
|
13 |
+
model = load_model()
|
14 |
+
|
15 |
+
# Streamlit app title
|
16 |
+
st.title("Real-Time Object Detection for Blind Assistance")
|
17 |
+
st.write("This application detects objects in real-time from a webcam feed and provides audio feedback.")
|
18 |
+
|
19 |
+
# Start detection button
|
20 |
+
start_detection = st.button("Start Real-Time Detection")
|
21 |
+
|
22 |
+
if start_detection:
|
23 |
+
# Open webcam
|
24 |
+
st.write("Starting webcam... Press 'q' to stop.")
|
25 |
+
cap = cv2.VideoCapture(0) # 0 for default webcam, change if multiple webcams are connected
|
26 |
+
|
27 |
+
# Check if webcam is opened
|
28 |
+
if not cap.isOpened():
|
29 |
+
st.write("Error: Could not open webcam.")
|
30 |
+
else:
|
31 |
+
stframe = st.empty() # Placeholder for video frames
|
32 |
+
|
33 |
+
while cap.isOpened():
|
34 |
+
ret, frame = cap.read()
|
35 |
+
if not ret:
|
36 |
+
break
|
37 |
+
|
38 |
+
# Perform object detection
|
39 |
+
results = model(frame)
|
40 |
+
|
41 |
+
# Get detected object names
|
42 |
+
detected_objects = [model.names[int(box.cls)] for box in results[0].boxes]
|
43 |
+
|
44 |
+
# Generate audio feedback
|
45 |
+
if detected_objects:
|
46 |
+
objects_text = ", ".join(set(detected_objects))
|
47 |
+
summary_text = f"Detected: {objects_text}."
|
48 |
+
st.write(summary_text) # Display detected objects in Streamlit
|
49 |
+
|
50 |
+
# Convert text to speech with gTTS
|
51 |
+
tts = gTTS(text=summary_text, lang='en')
|
52 |
+
audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
53 |
+
tts.save(audio_file.name)
|
54 |
+
os.system(f"mpg123 {audio_file.name}") # Play the audio summary
|
55 |
+
|
56 |
+
# Annotate frame with bounding boxes
|
57 |
+
annotated_frame = results[0].plot()
|
58 |
+
|
59 |
+
# Display the annotated frame in Streamlit
|
60 |
+
stframe.image(annotated_frame, channels="BGR", use_column_width=True)
|
61 |
+
|
62 |
+
# Break the loop on 'q' key press
|
63 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
64 |
+
break
|
65 |
+
|
66 |
+
# Release webcam and close OpenCV windows
|
67 |
+
cap.release()
|
68 |
+
cv2.destroyAllWindows()
|
69 |
+
st.write("Real-Time Detection Stopped.")
|