Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,37 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
import cv2
|
4 |
-
from
|
5 |
-
import numpy as np
|
6 |
-
import tempfile
|
7 |
-
import os
|
8 |
|
9 |
# Load YOLOv8 model
|
10 |
-
model = YOLO("yolov8n.pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
#
|
15 |
-
|
16 |
-
annotated_frame = results[0].plot() # Annotate the frame with bounding boxes
|
17 |
-
|
18 |
-
# Extract detected object labels
|
19 |
-
detected_objects = [model.names[int(box.cls)] for box in results[0].boxes]
|
20 |
-
if detected_objects:
|
21 |
-
objects_text = ", ".join(set(detected_objects))
|
22 |
-
# Generate audio alert for detected objects
|
23 |
-
tts = gTTS(f"Detected: {objects_text}", lang="en")
|
24 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
25 |
-
tts.save(temp_file.name)
|
26 |
-
return annotated_frame, temp_file.name
|
27 |
-
return annotated_frame, None
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
annotated_frame, audio_file = detect_objects(image)
|
33 |
-
if audio_file:
|
34 |
-
return annotated_frame, audio_file
|
35 |
-
else:
|
36 |
-
return annotated_frame, None
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
fn=process_frame,
|
41 |
-
inputs=gr.Image(source="webcam", tool="editor", type="numpy"),
|
42 |
-
outputs=[
|
43 |
-
gr.Image(label="Detected Objects"),
|
44 |
-
gr.Audio(label="Audio Alert (if any)")
|
45 |
-
],
|
46 |
-
live=True, # Enable live streaming from webcam
|
47 |
-
)
|
48 |
|
49 |
-
# Launch
|
50 |
-
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
from ultralytics import YOLO
|
4 |
import cv2
|
5 |
+
from datetime import datetime
|
|
|
|
|
|
|
6 |
|
7 |
# Load YOLOv8 model
|
8 |
+
model = YOLO("yolov8n.pt")
|
9 |
+
|
10 |
+
def detect_objects(video):
|
11 |
+
cap = cv2.VideoCapture(video)
|
12 |
+
frames = []
|
13 |
+
while cap.isOpened():
|
14 |
+
ret, frame = cap.read()
|
15 |
+
if not ret:
|
16 |
+
break
|
17 |
+
results = model(frame)
|
18 |
+
annotated_frame = results[0].plot()
|
19 |
+
_, buffer = cv2.imencode('.jpg', annotated_frame)
|
20 |
+
frames.append(buffer.tobytes())
|
21 |
+
cap.release()
|
22 |
+
return frames
|
23 |
|
24 |
+
# Create Gradio interface
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
gr.Markdown("# Real-Time Object Detection for Blind Assistance")
|
27 |
+
gr.Markdown("This app detects objects in real-time using your webcam.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Use gr.Video for webcam input
|
30 |
+
video_input = gr.Video(source="webcam", label="Webcam Stream")
|
31 |
+
output_gallery = gr.Video(label="Detection Output")
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
detect_button = gr.Button("Start Detection")
|
34 |
+
detect_button.click(detect_objects, inputs=[video_input], outputs=[output_gallery])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Launch the app
|
37 |
+
demo.launch()
|