Spaces:
Sleeping
Sleeping
import cv2 | |
import random | |
from ultralytics import YOLO | |
from gtts import gTTS | |
from datetime import datetime, timedelta | |
import gradio as gr | |
# Load YOLOv8 model | |
yolo = YOLO("yolov8n.pt") | |
# Audio alert settings | |
alert_categories = {"person", "cat", "dog", "knife", "fire", "gun"} | |
last_alert_time = {} | |
alert_cooldown = timedelta(seconds=10) | |
# Create audio alert as downloadable file | |
def generate_audio_alert(label, position): | |
phrases = [ | |
f"Be careful, there's a {label} on your {position}.", | |
f"Watch out! {label} detected on your {position}.", | |
f"Alert! A {label} is on your {position}.", | |
] | |
caution_note = random.choice(phrases) | |
# Save audio alert as an MP3 file | |
temp_file_path = f"audio_alert_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" | |
tts = gTTS(caution_note) | |
tts.save(temp_file_path) | |
return temp_file_path | |
# Process a single frame | |
def process_frame(image, enable_audio): | |
results = yolo(image) | |
result = results[0] | |
detected_objects = {} | |
audio_files = [] | |
for box in result.boxes: | |
x1, y1, x2, y2 = map(int, box.xyxy[0]) | |
label = result.names[int(box.cls[0])] | |
if enable_audio and label in alert_categories: | |
frame_center_x = image.shape[1] // 2 | |
obj_center_x = (x1 + x2) // 2 | |
position = "left" if obj_center_x < frame_center_x else "right" | |
detected_objects[label] = position | |
current_time = datetime.now() | |
if ( | |
label not in last_alert_time | |
or current_time - last_alert_time[label] > alert_cooldown | |
): | |
audio_file = generate_audio_alert(label, position) | |
audio_files.append(audio_file) | |
last_alert_time[label] = current_time | |
# Draw bounding boxes | |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
return image, audio_files | |
# Gradio interface function | |
def object_detection_webcam(enable_audio): | |
cap = cv2.VideoCapture(0) | |
if not cap.isOpened(): | |
return "Error: Unable to access the camera." | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
return "Error: Unable to read from camera." | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
processed_frame, audio_files = process_frame(frame, enable_audio) | |
yield {"image": processed_frame, "audio": audio_files} | |
cap.release() | |
# Gradio UI | |
def gradio_app(): | |
return gr.Interface( | |
fn=object_detection_webcam, | |
inputs=[gr.Checkbox(label="Enable Audio Alerts", value=False)], | |
outputs=[ | |
gr.Image(label="Processed Frame"), | |
gr.File(label="Audio Alerts"), | |
], | |
live=True, | |
) | |
gradio_app().launch() | |