Spaces:
Running
Running
import gradio as gr | |
import os | |
import torch | |
import numpy as np | |
import pandas as pd | |
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoTokenizer | |
from huggingface_hub import HfApi | |
from label_dicts import CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES | |
from .utils import is_disk_full | |
HF_TOKEN = os.environ["hf_read"] | |
languages = [ | |
"Multilingual", | |
] | |
domains = { | |
"media": "media", | |
"social media": "social", | |
"parliamentary speech": "parlspeech", | |
"legislative documents": "legislative", | |
"executive speech": "execspeech", | |
"executive order": "execorder", | |
"party programs": "party", | |
"judiciary": "judiciary", | |
"budget": "budget", | |
"public opinion": "publicopinion", | |
"local government agenda": "localgovernment" | |
} | |
def check_huggingface_path(checkpoint_path: str): | |
try: | |
hf_api = HfApi(token=HF_TOKEN) | |
hf_api.model_info(checkpoint_path, token=HF_TOKEN) | |
return True | |
except: | |
return False | |
def build_huggingface_path(language: str, domain: str): | |
return "poltextlab/xlm-roberta-large-pooled-cap-minor" | |
def predict(text, model_id, tokenizer_id): | |
device = torch.device("cpu") | |
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) | |
inputs = tokenizer(text, | |
max_length=256, | |
truncation=True, | |
padding="do_not_pad", | |
return_tensors="pt").to(device) | |
model.eval() | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() | |
output_pred = {f"[{CAP_MIN_NUM_DICT[i]}] {CAP_MIN_LABEL_NAMES[CAP_MIN_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]} | |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>' | |
return output_pred, output_info | |
def predict_cap(text, language, domain): | |
domain = domains[domain] | |
model_id = build_huggingface_path(language, domain) | |
tokenizer_id = "xlm-roberta-large" | |
if is_disk_full(): | |
os.system('rm -rf /data/models*') | |
os.system('rm -r ~/.cache/huggingface/hub') | |
return predict(text, model_id, tokenizer_id) | |
demo = gr.Interface( | |
title="CAP Minor Topics Babel Demo", | |
fn=predict_cap, | |
inputs=[gr.Textbox(lines=6, label="Input"), | |
gr.Dropdown(languages, label="Language"), | |
gr.Dropdown(domains.keys(), label="Domain")], | |
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()]) | |