# %% import traceback from typing import List import numpy as np import torch import torch.nn as nn from transformers import ( BartForConditionalGeneration, BartTokenizer, ) class BARTScorer: def __init__( self, device="cuda:0", max_length=1024, checkpoint="facebook/bart-large-cnn", ): # Set up model self.device = device self.max_length = max_length self.tokenizer = BartTokenizer.from_pretrained(checkpoint) self.model = BartForConditionalGeneration.from_pretrained(checkpoint) self.model.eval() self.model.to(device) # Set up loss self.loss_fct = nn.NLLLoss( reduction="none", ignore_index=self.model.config.pad_token_id, ) self.lsm = nn.LogSoftmax(dim=1) def load(self, path=None): """Load model from paraphrase finetuning""" if path is None: path = "./bart.pth" self.model.load_state_dict(torch.load(path, map_location=self.device)) def score(self, srcs, tgts, batch_size=16): """Score a batch of examples""" score_list = [] for i in range(0, len(srcs), batch_size): src_list = srcs[i : i + batch_size] tgt_list = tgts[i : i + batch_size] try: with torch.no_grad(): encoded_src = self.tokenizer( src_list, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt", ) encoded_tgt = self.tokenizer( tgt_list, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt", ) src_tokens = encoded_src["input_ids"].to(self.device) src_mask = encoded_src["attention_mask"].to(self.device) tgt_tokens = encoded_tgt["input_ids"].to(self.device) tgt_mask = encoded_tgt["attention_mask"] tgt_len = tgt_mask.sum(dim=1).to(self.device) output = self.model( input_ids=src_tokens, attention_mask=src_mask, labels=tgt_tokens, ) logits = output.logits.view( -1, self.model.config.vocab_size, ) loss = self.loss_fct(self.lsm(logits), tgt_tokens.view(-1)) loss = loss.view(tgt_tokens.shape[0], -1) loss = loss.sum(dim=1) / tgt_len curr_score_list = [-x.item() for x in loss] score_list += curr_score_list except RuntimeError: traceback.print_exc() print(f"source: {src_list}") print(f"target: {tgt_list}") exit(0) return score_list def multi_ref_score( self, srcs, tgts: List[List[str]], agg="mean", batch_size=4, ): # Assert we have the same number of references ref_nums = [len(x) for x in tgts] if len(set(ref_nums)) > 1: raise Exception( "You have different number of references per test sample.", ) ref_num = len(tgts[0]) score_matrix = [] for i in range(ref_num): curr_tgts = [x[i] for x in tgts] scores = self.score(srcs, curr_tgts, batch_size) score_matrix.append(scores) if agg == "mean": score_list = np.mean(score_matrix, axis=0) elif agg == "max": score_list = np.max(score_matrix, axis=0) else: raise NotImplementedError return list(score_list) def test(self, batch_size=3): """Test""" src_list = [ "This is a very good idea. Although simple, but very insightful.", "Can I take a look?", "Do not trust him, he is a liar.", ] tgt_list = [ "That's stupid.", "What's the problem?", "He is trustworthy.", ] print(self.score(src_list, tgt_list, batch_size))