from difflib import SequenceMatcher
import pandas as pd
from src.application.image.image_detection import (
detect_image_by_ai_model,
detect_image_by_reverse_search,
detect_image_from_news_image,
)
from src.application.text.entity import (
apply_highlight,
highlight_entities,
)
from src.application.text.helper import extract_equal_text
from src.application.text.model_detection import detect_text_by_ai_model
from src.application.text.preprocessing import split_into_paragraphs
from src.application.text.search_detection import (
check_human,
detect_text_by_relative_search,
find_text_source,
)
class NewsVerification:
def __init__(self):
self.news_text = ""
self.news_title = ""
self.news_content = ""
self.news_image = ""
self.text_prediction_label: list[str] = []
self.text_prediction_score: list[float] = []
self.text_referent_url: list[str] = []
self.image_prediction_label: list[str] = []
self.image_prediction_score: list[str] = []
self.image_referent_url: list[str] = []
self.news_prediction_label = ""
self.news_prediction_score = -1
self.found_img_url: list[str] = []
self.aligned_sentences: list[dict] = []
self.aligned_sentences_df: pd.DataFrame = pd.DataFrame(
columns=[
"input_sentence",
"matched_sentence",
"label",
"similarity",
"paraphrase",
"url",
"group",
"entities",
],
)
self.is_paraphrased: list[bool] = []
self.ordinary_user_table: list = []
self.fact_checker_table: list = []
self.governor_table: list = []
self.entities_with_colors = []
def load_news(self, news_title, news_content, news_image):
self.news_text = news_title + "\n\n" + news_content
self.news_title = news_title
self.news_content = news_content
self.news_image = news_image
def determine_text_origin(self):
"""
Determines the origin of the given text based on paraphrasing detection
and human authorship analysis.
Args:
text: The input text to be analyzed.
Returns:
str: The predicted origin of the text:
- "HUMAN": If the text is likely written by a human.
- "MACHINE": If the text is likely generated by a machine.
"""
print("CHECK TEXT:")
print("\tFrom search engine:")
# Classify by search engine
input_sentences = split_into_paragraphs(self.news_text)
current_index = 0
previous_paraphrase = None
ai_sentence = {
"input_sentence": "",
"matched_sentence": "",
"label": "",
"similarity": None,
"paraphrase": False,
"url": "",
}
for index, sentence in enumerate(input_sentences):
print(f"-------index = {index}-------")
print(f"current_sentence = {input_sentences[index]}")
if current_index >= len(input_sentences):
break
if (
current_index > index
and index != 0
and index != len(input_sentences) - 1
):
continue
(
paraphrase,
text_url,
searched_sentences,
img_urls,
current_index,
) = detect_text_by_relative_search(input_sentences, index)
if paraphrase is False:
# add sentence to ai_sentence
if ai_sentence["input_sentence"] != "":
ai_sentence["input_sentence"] += "
"
ai_sentence["input_sentence"] += sentence
if index == len(input_sentences) - 1:
# add ai_sentences to align_sentences
text_prediction_label, text_prediction_score = (
detect_text_by_ai_model(ai_sentence["input_sentence"])
)
ai_sentence["label"] = text_prediction_label
ai_sentence["similarity"] = text_prediction_score
self.aligned_sentences.append(ai_sentence)
else:
if previous_paraphrase is False or previous_paraphrase is None:
# add ai_sentences to align_sentences
if ai_sentence[
"input_sentence"
] != "" or current_index >= len(input_sentences):
text_prediction_label, text_prediction_score = (
detect_text_by_ai_model(
ai_sentence["input_sentence"],
)
)
ai_sentence["label"] = text_prediction_label
ai_sentence["similarity"] = text_prediction_score
self.aligned_sentences.append(ai_sentence)
# reset
ai_sentence = {
"input_sentence": "",
"matched_sentence": "",
"label": "",
"similarity": None,
"paraphrase": False,
"url": "",
}
# add searched_sentences to align_sentences
if searched_sentences["input_sentence"] != "":
self.found_img_url.extend(img_urls)
if check_human(searched_sentences):
searched_sentences["label"] = "HUMAN"
else:
searched_sentences["label"] = "MACHINE"
self.aligned_sentences.append(searched_sentences)
previous_paraphrase = paraphrase
def determine_text_origin_2(self):
"""
Determines the origin of the given text based on paraphrasing detection
and human authorship analysis.
Args:
text: The input text to be analyzed.
Returns:
str: The predicted origin of the text:
- "HUMAN": If the text is likely written by a human.
- "MACHINE": If the text is likely generated by a machine.
"""
print("CHECK TEXT:")
print("\tFrom search engine:")
# Classify by search engine
input_sentences = split_into_paragraphs(self.news_text)
for _ in range(5):
self.aligned_sentences_df = pd.concat(
[self.aligned_sentences_df, pd.DataFrame([{}])],
ignore_index=False,
)
for index, sentence in enumerate(input_sentences):
print(f"-------index = {index}-------")
print(f"current_sentence = {input_sentences[index]}")
if self.aligned_sentences_df["url"] is not None:
continue
self.aligned_sentences_df, img_urls = find_text_source(
input_sentences[index],
self.aligned_sentences_df,
)
def detect_image_origin(self):
print("CHECK IMAGE:")
if self.news_image is None:
self.image_prediction_label = "UNKNOWN"
self.image_prediction_score = 0.0
self.image_referent_url = None
return
for image in self.found_img_url:
print(f"\tfound_img_url: {image}")
matched_url, similarity = detect_image_from_news_image(
self.news_image,
self.found_img_url,
)
if matched_url is not None:
print(f"matching image: {matched_url}\nsimilarity: {similarity}\n")
self.image_prediction_label = "HUMAN"
self.image_prediction_score = similarity
self.image_referent_url = matched_url
return
matched_url, similarity = detect_image_by_reverse_search(
self.news_image,
)
if matched_url is not None:
print(f"matching image: {matched_url}\nsimilarity: {similarity}\n")
self.image_prediction_label = "HUMAN"
self.image_prediction_score = similarity
self.image_referent_url = matched_url
return
detected_label, score = detect_image_by_ai_model(self.news_image)
if detected_label:
print(f"detected_label: {detected_label} ({score})")
self.image_prediction_label = detected_label
self.image_prediction_score = score
self.image_referent_url = None
return
self.image_prediction_label = "UNKNOWN"
self.image_prediction_score = 50
self.image_referent_url = None
def determine_news_origin(self):
if self.text_prediction_label == "MACHINE":
text_prediction_score = 100 - self.text_prediction_score
elif self.text_prediction_label == "UNKNOWN":
text_prediction_score = 50
else:
text_prediction_score = self.text_prediction_score
if self.image_prediction_label == "MACHINE":
image_prediction_score = 100 - self.image_prediction_score
elif self.image_prediction_label == "UNKNOWN":
image_prediction_score = 50
else:
image_prediction_score = self.image_prediction_score
news_prediction_score = (
text_prediction_score + image_prediction_score
) / 2
if news_prediction_score > 50:
self.news_prediction_score = news_prediction_score
self.news_prediction_label = "HUMAN"
else:
self.news_prediction_score = 100 - news_prediction_score
self.news_prediction_label = "MACHINE"
def generate_analysis_report(self):
self.determine_text_origin()
self.detect_image_origin()
def analyze_details(self):
entities_with_colors = []
for index, aligned_sentence in enumerate(self.aligned_sentences):
# Get entity-words (in pair) with colors
entities_with_colors = highlight_entities(
aligned_sentence["input_sentence"],
aligned_sentence["matched_sentence"],
)
self.aligned_sentences[index]["entities"] = entities_with_colors
ordinary_user_table = self.create_ordinary_user_table()
fact_checker_table = self.create_fact_checker_table()
governor_table = self.create_governor_table()
return ordinary_user_table, fact_checker_table, governor_table
def get_text_urls(self):
return set(self.text_referent_url)
def compare_sentences(self, sentence_1, sentence_2, position, color):
"""
Compares two sentences and identifies common phrases,
outputting their start and end positions.
"""
if not sentence_1 or not sentence_2: # Handle empty strings
return []
s = SequenceMatcher(None, sentence_1, sentence_2)
common_phrases = []
for block in s.get_matching_blocks():
if block.size > 0: # Ignore zero-length matches
start_1 = block.a
end_1 = block.a + block.size
start_2 = block.b
end_2 = block.b + block.size
phrase = sentence_1[
start_1:end_1
] # Or sentence_2[start_2:end_2], they are the same
common_phrases.append(
{
"phrase": phrase,
"start_1": start_1 + position,
"end_1": end_1 + position,
"start_2": start_2,
"end_2": end_2,
"color": color,
},
)
position += len(sentence_1)
return common_phrases, position
def create_fact_checker_table(self):
rows = []
max_length = 30 # TODO: put this in configuration
rows.append(self.format_image_fact_checker_row(max_length))
for aligned_sentence in self.aligned_sentences:
if "input_sentence" not in aligned_sentence:
continue
# Get index of equal phrases in input and source sentences
equal_idx_1, equal_idx_2 = extract_equal_text(
aligned_sentence["input_sentence"],
aligned_sentence["matched_sentence"],
)
# Get entity-words (in pair) with colors
# entities_with_colors = highlight_entities(
# aligned_sentence["input_sentence"],
# aligned_sentence["matched_sentence"],
# )
self.fact_checker_table.append(
[
aligned_sentence,
equal_idx_1,
equal_idx_2,
aligned_sentence["entities"],
],
)
for row in self.fact_checker_table:
formatted_row = self.format_text_fact_checker_row(row, max_length)
rows.append(formatted_row)
table = "\n".join(rows)
return f"""
Input news | Source (corresponding URL provided in Originality) | Forensic | Originality |
---|