pmkhanh7890's picture
run pre-commit
38fd181
raw
history blame
5.73 kB
import colorsys
import gradio as gr
def lighten_color(hex_color, factor=1.8):
"""Lightens a HEX color by increasing its brightness in HSV space."""
hex_color = hex_color.lstrip("#")
r, g, b = (
int(hex_color[0:2], 16),
int(hex_color[2:4], 16),
int(hex_color[4:6], 16),
)
# Convert to HSV
h, s, v = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)
v = min(1.0, v * factor) # Increase brightness
# Convert back to HEX
r, g, b = (int(c * 255) for c in colorsys.hsv_to_rgb(h, s, v))
return f"#{r:02x}{g:02x}{b:02x}"
def darken_color(hex_color, factor=0.7):
"""Darkens a hex color by reducing its brightness in the HSV space."""
hex_color = hex_color.lstrip("#")
r, g, b = (
int(hex_color[0:2], 16),
int(hex_color[2:4], 16),
int(hex_color[4:6], 16),
)
# Convert to HSV to adjust brightness
h, s, v = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)
v = max(0, v * factor) # Reduce brightness
# Convert back to HEX
r, g, b = (int(c * 255) for c in colorsys.hsv_to_rgb(h, s, v))
return f"#{r:02x}{g:02x}{b:02x}"
# Generate unique colors for pairs
def generate_color(index, total_colors=20):
"""Generates a unique, evenly spaced color for each index using HSL."""
hue = index / total_colors # Spread hues in range [0,1]
saturation = 0.65 # Keep colors vivid
lightness = 0.75 # Balanced brightness
# Convert HSL to RGB
r, g, b = colorsys.hls_to_rgb(hue, lightness, saturation)
r, g, b = int(r * 255), int(g * 255), int(b * 255)
return f"#{r:02x}{g:02x}{b:02x}" # Convert to hex
def highlight_pairs(text1, text2):
"""Highlight matching pairs between two paragraphs"""
# Predefined matching pairs
match_pairs = [
{
"index": 1,
"text1": "deep learning",
"start1": 13,
"end1": 26,
"text2": "deep learning",
"start2": 12,
"end2": 25,
},
{
"index": 2,
"text1": "neural networks",
"start1": 56,
"end1": 71,
"text2": "neural networks",
"start2": 68,
"end2": 83,
},
{
"index": 3,
"text1": "AI research",
"start1": 86,
"end1": 97,
"text2": "AI research",
"start2": 55,
"end2": 66,
},
]
# Assign unique colors to each index
pair_colors = {
pair["index"]: generate_color(
pair["index"],
total_colors=len(match_pairs),
)
for pair in match_pairs
}
def apply_highlight(
text,
pairs,
key_start,
key_end,
key_index,
pair_colors,
):
highlighted_text = ""
prev_end = 0
for pair in sorted(pairs, key=lambda x: x[key_start]):
start, end, index = pair[key_start], pair[key_end], pair[key_index]
color = pair_colors.get(
index,
"#ddd",
) # Default color if not found
color = lighten_color(
color,
factor=2.2,
) # Lightened color for background text
label_color = darken_color(
color,
factor=0.7,
) # Make label color darker
# Style the index as a label
index_label = (
f'<span style="background-color:{label_color}; color:white; '
f"padding:1px 4px; border-radius:4px; font-size:12px; "
f'font-weight:bold; display:inline-block; margin-right:4px;">{index}</span>' # noqa: E501
)
# Append non-highlighted text
highlighted_text += text[prev_end:start]
# Append highlighted text with index label
highlighted_text += (
f'<span style="background-color:{color}; '
f'border-radius:3px; font-size:14px; display:inline-block;">'
f"{index_label} {text[start:end]}</span>"
)
prev_end = end
# Append remaining text
highlighted_text += text[prev_end:]
return highlighted_text
# Apply highlighting to both paragraphs using the global MATCH_PAIRS
highlighted_text1 = apply_highlight(
text1,
match_pairs,
"start1",
"end1",
"index",
pair_colors,
)
highlighted_text2 = apply_highlight(
text2,
match_pairs,
"start2",
"end2",
"index",
pair_colors,
)
return highlighted_text1, highlighted_text2
if __name__ == "__main__":
# Create Gradio Interface
text1 = ""
with gr.Blocks() as demo:
gr.Markdown("### Highlight Matching Parts Between Two Paragraphs")
text1_input = gr.Textbox(
label="Paragraph 1",
lines=5,
value="""
The field of deep learning is advancing rapidly.
Modern neural networks are improving AI research significantly.
""",
)
text2_input = gr.Textbox(
label="Paragraph 2",
lines=5,
value="""
Advances in deep learning have led to breakthroughs in AI research.
Neural networks are at the core of these innovations",
""",
)
output1 = gr.HTML()
output2 = gr.HTML()
submit_button = gr.Button("Highlight Matches")
submit_button.click(
fn=highlight_pairs,
inputs=[text1_input, text2_input],
outputs=[output1, output2],
)
# Launch the Gradio app
demo.launch()