Spaces:
Sleeping
Sleeping
""" | |
Author: Khanh Phan | |
Date: 2024-12-04 | |
""" | |
import re | |
import string | |
from collections import Counter | |
from difflib import SequenceMatcher | |
from nltk.tokenize import ( | |
sent_tokenize, | |
word_tokenize, | |
) | |
from nltk.util import ngrams | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from src.application.config import PREFIX | |
def clean_text(text: str) -> str: | |
""" | |
Cleans and preprocesses a given text string. | |
Args: | |
text (str): The input text to be cleaned. | |
Returns: | |
str: The cleaned and preprocessed text, containing the first 18 words. | |
""" | |
# Define a set of punctuation characters to exclude, | |
# exclude comma and period due to numbers | |
punctuations = r"""!"#$%&'()*+-/:;<=>?@[\]^_`{|}~""" | |
# Lowering text | |
text = text.lower() | |
# Removing punctuation | |
text = "".join([c for c in text if c not in punctuations]) | |
# Removing whitespace and newlines | |
text = re.sub(r"\s+", " ", text) | |
# Replace £ with * because Google search doesn't recognize £ | |
text.replace("£", " * ") | |
# Split the text into a list of words. | |
words = text.split() | |
# Join the first 18 words back into a string | |
text = " ".join(words[:18]) # TODO: consider another number | |
return text | |
def remove_punctuation(text: str) -> str: | |
""" | |
Removes all punctuation characters from a string, except for periods (.). | |
Args: | |
text (str): The input string. | |
Returns: | |
str: The string with all punctuation characters removed, | |
except for periods. | |
""" | |
# Create a string containing all punctuation characters, | |
# except for periods. | |
punctuation_without_dot = string.punctuation.replace(".", "") | |
# Create a translation table to remove the specified punctuation chars. | |
translator = str.maketrans("", "", punctuation_without_dot) | |
# Apply the translation table to the input text and return the result. | |
return text.translate(translator) | |
def get_keywords(text, num_keywords=5): | |
""" | |
Extracts the top k keywords from a document using the TF-IDF method. | |
Args: | |
text (str): The input text from which to extract keywords. | |
num_keywords (int, optional): The number of top keywords to return. | |
Returns: | |
list: A list of the top keywords extracted from the text. | |
""" | |
# Create a TF-IDF Vectorizer | |
vectorizer = TfidfVectorizer(stop_words="english") | |
# Fit and transform the text | |
tfidf_matrix = vectorizer.fit_transform([text]) | |
# Get feature names (words) | |
feature_names = vectorizer.get_feature_names_out() | |
# Get TF-IDF scores | |
tfidf_scores = tfidf_matrix.toarray()[0] | |
# Sort words by TF-IDF score | |
word_scores = list(zip(feature_names, tfidf_scores)) | |
word_scores.sort(key=lambda x: x[1], reverse=True) | |
# Return top keywords | |
return [word for word, score in word_scores[:num_keywords]] | |
def get_important_sentences( | |
sentence: str, | |
keywords: list[str], | |
num_sentences: int = 3, | |
) -> list[str]: | |
""" | |
Selects important sentences based on a list of keywords. | |
Args: | |
sentence (str): The input sentence. | |
keywords (list[str]): List of important keywords. | |
num_sentences (int): Number of sentences to return (default is 3). | |
Returns: | |
list: A list of important sentences. | |
""" | |
# Clean and split the sentence into sentences | |
sentences = [s for s in re.split(r"(?<=[.!?])\s+", sentence) if s] | |
# Calculate the importance score for each sentence | |
sentence_scores = [] | |
for sentence in sentences: | |
processed_sentence = clean_text(sentence) | |
score = 0 | |
words = processed_sentence.lower().split() | |
word_count = Counter(words) | |
for keyword in keywords: | |
if keyword.lower() in word_count: | |
score += word_count[keyword.lower()] | |
sentence_scores.append((sentence, score)) | |
# Sort sentences by their scores in descending order | |
sentence_scores.sort(key=lambda x: x[1], reverse=True) | |
# Return the top N sentences | |
return [sentence for sentence, score in sentence_scores[:num_sentences]] | |
def extract_important_phrases( | |
text: str, | |
keywords: list[str], | |
phrase_length: int = 5, | |
) -> list[str]: | |
""" | |
Extracts important phrases based on a list of keywords. | |
Phrase length is auto-determined, and overlapped parts are less than 20%. | |
Args: | |
text (str): The input text. | |
keywords (list[str]): List of important keywords. | |
phrase_length (int): Length of phrases to extract (default: 5 words). | |
Returns: | |
list: A list of important phrases. | |
""" | |
# Tokenize the text into words | |
words = word_tokenize(text.lower()) | |
# Determine phrase length (between 3 and 7 words) | |
phrase_length = min(max(len(words) // 10, 5), 7) | |
# Generate n-grams (phrases) from the text | |
phrases = list(ngrams(words, phrase_length)) | |
important_phrases = [] | |
used_indices = set() | |
for i, phrase in enumerate(phrases): | |
# Check if the phrase contains any keyword | |
if any(keyword.lower() in phrase for keyword in keywords): | |
# Check overlap with previously selected phrases | |
if not any(abs(i - j) < phrase_length * 0.8 for j in used_indices): | |
important_phrases.append(clean_text(" ".join(phrase))) | |
used_indices.add(i) | |
return important_phrases | |
def extract_equal_text(text1: str, text2: str) -> tuple[list[int], list[int]]: | |
""" | |
Extracts the indices of equal text segments between two strings. | |
Args: | |
text1 (str): The first input string. | |
text2 (str): The second input string. | |
Returns: | |
tuple[ | |
list[dict{"start": int, "end": int}], | |
list[dict{"start": int, "end": int}] | |
] | |
- list: the start and end indices of equal segments in text1. | |
- list: the start and end indices of equal segments in text2. | |
""" | |
def cleanup(text: str) -> str: | |
""" | |
Cleans up a text string by converting to lowercase | |
and removing punctuation. | |
Args: | |
text (str): The input text. | |
Returns: | |
str: The cleaned text. | |
""" | |
text = text.lower() | |
text = text.translate(str.maketrans("", "", string.punctuation)) | |
return text | |
# Clean and split the input texts into lists of words. | |
splited_text1 = cleanup(text1).split() | |
splited_text2 = cleanup(text2).split() | |
# Create a SequenceMatcher object to compare the cleaned word lists. | |
s = SequenceMatcher(None, splited_text1, splited_text2) | |
equal_idx_1 = [] | |
equal_idx_2 = [] | |
# Split the original texts into lists of words (without cleaning). | |
text1 = text1.split() | |
text2 = text2.split() | |
for tag, i1, i2, j1, j2 in s.get_opcodes(): | |
if tag == "equal": | |
# Append the start and end indices of the equal segment | |
# to the respective lists. | |
equal_idx_1.append({"start": i1, "end": i2}) | |
equal_idx_2.append({"start": j1, "end": j2}) | |
# subtext_1 = " ".join(text1[i1:i2]) | |
# subtext_2 = " ".join(text2[j1:j2]) | |
# print(f'{tag:7} a[{i1:2}:{i2:2}] --> b[{j1:2}:{j2:2}] ' | |
# f'{subtext_1!r:>55} --> {subtext_2!r}') | |
return equal_idx_1, equal_idx_2 | |
def connect_consecutive_indexes(nums: list[int]) -> list[list[int, int]]: | |
""" | |
Connects consecutive integers in a list. | |
Args: | |
nums (list): A list of integers. | |
Returns: | |
list: A list of lists, | |
where each inner list represents a consecutive range. | |
For example: [1, 2, 3, 5, 6] becomes [[1, 3], [5, 6]]. | |
""" | |
if not nums: # Handle empty input | |
return [] | |
result = [] | |
start = nums[0] | |
end = nums[0] | |
for i in range(1, len(nums)): | |
# Check if the current number is consecutive to the previous end. | |
if nums[i] == end + 1: | |
end = nums[i] # Extend the current range. | |
else: | |
# Add the current range to the result and start a new range. | |
result.append([start, end]) | |
start = nums[i] | |
end = nums[i] | |
# Add the last range to the result. | |
result.append([start, end]) | |
return result | |
def postprocess_label(labels: list[str]) -> str: | |
""" | |
Creates a label string with the format | |
"Partially generated by [label1] and [label2] and ...". | |
Removes duplicate labels while preserving the original order. | |
Args: | |
labels: A list of strings representing labels. | |
Returns: | |
A string with the formatted label. | |
""" | |
for index, label in enumerate(labels): | |
# if label.startswith(PREFIX): | |
# labels[index] = label[len(PREFIX) :] | |
if PREFIX in label: | |
labels[index] = label.replace(PREFIX, "") | |
labels = list(set(labels)) | |
label = "" | |
if len(labels) == 1: | |
label += labels[0] | |
elif len(labels) == 2: | |
label += f"{labels[0]} and {labels[1]}" | |
else: | |
combination = ", ".join(labels[0 : len(labels) - 1]) | |
label += f"{combination}, and {labels[-1]}" | |
return label | |
def split_into_sentences(input_text: str) -> list[str]: | |
""" | |
Splits input text into sentences by newlines | |
and then tokenizes each paragraph into sentences. | |
Args: | |
input_text (str): The input text as a string. | |
Returns: | |
list: A list of sentences. | |
Returns an empty list if input is not a string. | |
""" | |
if not isinstance(input_text, str): | |
return [] | |
# Split the input text into paragraphs based on newline characters, | |
# keeping the newline characters. | |
paragraphs = input_text.splitlines(keepends=True) | |
sentences = [] | |
for paragraph in paragraphs: | |
# Remove leading/trailing whitespace | |
paragraph = paragraph.strip() | |
if paragraph and paragraph != "\n": | |
# Tokenize the paragraph into sentences | |
sentences.extend(sent_tokenize(paragraph)) | |
return sentences | |
def split_into_paragraphs(input_text: str) -> list[str]: | |
""" | |
Splits input text into paragraphs based on newline characters. | |
Args: | |
input_text (str): The input text as a string. | |
Returns: | |
list: A list of paragraphs. | |
Returns an empty list if input is not a string. | |
""" | |
if not isinstance(input_text, str): | |
return [] | |
# Split the input text into paragraphs based on newline characters, | |
# keeping the newline characters. | |
paragraphs = input_text.splitlines(keepends=True) | |
out_paragraphs = [] | |
for paragraph in paragraphs: | |
# Remove leading/trailing whitespace | |
# paragraph = paragraph.strip() | |
if paragraph and paragraph != "\n": | |
# Append the cleaned paragraph to the output list. | |
out_paragraphs.append(paragraph) | |
return out_paragraphs | |
def extract_starts_ends( | |
colored_idx: list[dict], | |
) -> tuple[list[int], list[int]]: | |
""" | |
Extracts start and end indices from a list of dictionaries. | |
Args: | |
colored_idx (list[dict]): A list of dictionaries, | |
where each dictionary has 'start' and 'end' keys. | |
Returns: | |
tuple: A tuple containing two lists: | |
- starts (list[int]): A list of start indices. | |
- ends (list[int]): A list of end indices. | |
""" | |
starts = [] | |
ends = [] | |
for index in colored_idx: | |
starts.append(index["start"]) | |
ends.append(index["end"]) | |
return starts, ends | |
def filter_indices( | |
starts: list[int], | |
ends: list[int], | |
ignore_indices: list[int], | |
): | |
""" | |
Filters start and end indices to exclude any indices present in the | |
ignore_indices list. | |
Args: | |
starts (list[int]): A list of starting indices. | |
ends (list[int]): A list of ending indices. | |
Must be the same length as starts. | |
ignore_indices (list[int]): A list of indices to exclude. | |
Returns: | |
A tuple of two lists of integers: | |
- filtered_starts | |
- filtered_ends | |
Returns empty lists if the input is invalid | |
or if all ranges are filtered out. | |
Examples: | |
starts = [0, 5, 10] | |
ends = [3, 7, 12] # words at the end will not be colored. | |
ignore_indices = [1, 2, 12, 17] | |
# Output: | |
starts = [0, 3, 5, 10] | |
ends = [1, 4, 7, 12] | |
""" | |
if len(starts) != len(ends): | |
print( | |
"Error: The 'starts' & 'ends' lists must have the same length.", | |
) | |
return [], [] | |
filtered_starts = [] | |
filtered_ends = [] | |
for i in range(len(starts)): | |
start = starts[i] | |
end = ends[i] | |
if end < start: | |
print( | |
f"Error: End index {end} < start index {start} at position {i}.", # noqa: E501 | |
) | |
return [], [] | |
start_end = list(range(start, end + 1, 1)) | |
start_end = list(set(start_end) - set(ignore_indices)) | |
# new_start, new_end = self.extract_sequences(start_end) | |
new_start, new_end = extract_new_startend( | |
start, | |
end, | |
ignore_indices, | |
) | |
filtered_starts.extend(new_start) | |
filtered_ends.extend(new_end) | |
return filtered_starts, filtered_ends | |
def replace_leading_spaces(text: str) -> str: | |
""" | |
Replaces leading spaces in a string with ' '. | |
Args: | |
text: The input string. | |
Returns: | |
The string with leading spaces replaced by ' '. | |
""" | |
if text is None: | |
return None | |
leading_spaces = 0 | |
for char in text: | |
if char == " ": | |
leading_spaces += 1 | |
else: | |
break | |
if leading_spaces > 0: | |
return " " * leading_spaces + text[leading_spaces:] | |
else: | |
return text | |
def extract_new_startend( | |
start: int, | |
end: int, | |
ignore_indices: list[int], | |
) -> tuple[list[int], list[int]]: | |
""" | |
Extracts new start and end indices by splitting a range based on | |
ignored indices. | |
Args: | |
start (int): The starting index of the range. | |
end (int): The ending index of the range (exclusive). | |
ignore_indices (list): indices to ignore within the range. | |
Returns: | |
tuple: A tuple containing two lists: | |
- new_starts (list): Starting indices for the sub-ranges. | |
- new_ends (list): Ending indices for the sub-ranges. | |
""" | |
# Sort the set of ignore_indices in ascending order. | |
indexes = list(set(ignore_indices)) | |
indexes.sort() | |
new_starts = [] | |
new_ends = [] | |
new_start = start | |
# If no indices to ignore, return the original range. | |
if indexes is None or len(indexes) < 1: | |
new_starts.append(start) | |
new_ends.append(end) | |
return new_starts, new_ends | |
for index in indexes: | |
# Skip indices that are outside the range [start, end). | |
if index < start: | |
continue | |
elif index >= end: | |
continue | |
new_starts.append(new_start) | |
new_ends.append(index) | |
new_start = index + 1 | |
new_starts.append(new_start) | |
new_ends.append(end) | |
return new_starts, new_ends | |