File size: 5,599 Bytes
22e1b62
 
 
 
 
 
badcb49
22e1b62
da7dbd0
1ce1659
22e1b62
 
 
 
da7dbd0
 
1ce1659
22e1b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
 
 
 
badcb49
22e1b62
 
badcb49
22e1b62
 
1ce1659
22e1b62
1ce1659
badcb49
1ce1659
 
 
da7dbd0
 
1ce1659
 
 
 
badcb49
1ce1659
da7dbd0
 
 
 
1ce1659
badcb49
1ce1659
 
 
 
 
 
22e1b62
1ce1659
22e1b62
1ce1659
 
badcb49
1ce1659
da7dbd0
1ce1659
22e1b62
badcb49
1ce1659
badcb49
 
da7dbd0
 
 
22e1b62
 
 
 
 
1ce1659
22e1b62
da7dbd0
1ce1659
 
da7dbd0
 
1ce1659
da7dbd0
 
 
1ce1659
da7dbd0
 
 
1ce1659
22e1b62
da7dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os

import gradio as gr
import requests
from PIL import Image

from src.application.content_detection import NewsVerification
from src.application.url_reader import URLReader
from src.application.content_generation import generate_fake_image, generate_fake_text, replace_text


GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
SEARCH_ENGINE_ID = os.getenv('SEARCH_ENGINE_ID')

AZURE_TEXT_MODEL = ["gpt-4o-mini", "gpt-4o"]
AZURE_IMAGE_MODEL = ["dall-e-3", "Stable Diffusion (not supported)"]

def load_url(url):
    """
    Load content from the given URL.
    """
    content = URLReader(url)
    image = None
    header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36'}
    try:
        response = requests.get(
            url, 
            headers = header,
            stream = True
        )
        response.raise_for_status()  # Raise an exception for bad status codes
        
        image_response = requests.get(content.top_image, stream=True)
        try:
            image = Image.open(image_response.raw)
        except:
            print(f"Error loading image from {content.top_image}")
            
    except (requests.exceptions.RequestException, FileNotFoundError) as e:
        print(f"Error fetching image: {e}")

    return content.title, content.text, image


def generate_analysis_report(news_title:str, news_content: str, news_image: Image):
    news_analysis.load_news(news_title, news_content, news_image)
    return news_analysis.generate_analysis_report(), news_analysis.analyze_details()

news_analysis = NewsVerification()
# Define the GUI
with gr.Blocks() as demo:
    gr.Markdown("# NEWS VERIFICATION")

    with gr.Row():
        # SETTINGS 
        with gr.Column(scale=1):
            with gr.Accordion("Settings"):
                gr.Markdown("Give an URL or fill in news by yourself")

                with gr.Accordion("1. Enter a URL"):
                    url_input = gr.Textbox(
                        label="",
                        show_label=False,
                        value="https://bbc.com/future/article/20250110-how-often-you-should-wash-your-towels-according-to-science",
                        )
                    load_button = gr.Button("Load URL")
                    
                with gr.Accordion("2. Select content-generation models", open=True, visible=False):
                    with gr.Row():
                            text_generation_model = gr.Dropdown(choices=AZURE_TEXT_MODEL, label="Text-generation model")
                            image_generation_model = gr.Dropdown(choices=AZURE_IMAGE_MODEL, label="Image-generation model")
                            generate_text_button = gr.Button("Generate text")
                            generate_image_button = gr.Button("Generate image")

                with gr.Accordion("3. Replace any terms", open=True, visible=False):
                    replace_df = gr.Dataframe(
                        headers=["Find what:", "Replace with:"],
                        datatype=["str", "str"],
                        row_count=(1, "dynamic"),
                        col_count=(2, "fixed"),
                        interactive=True
                    )
                    replace_button = gr.Button("Replace all")

        # GENERATED CONTENT
        with gr.Column(scale=1):
            with gr.Accordion("Input News"):
                news_title = gr.Textbox(label="Title", value="")
                news_image = gr.Image(label="Image", type="filepath") 
                news_content = gr.Textbox(label="Content", value="", lines=12)

        # NEWS ANALYSIS REPORT
        with gr.Column(scale=1):
            with gr.Accordion("News Analysis"):
                detection_button = gr.Button("Verify news")
                analyzed_information = gr.HTML()
                with gr.Accordion("Detailed information"):
                    detailed_analysis = gr.HTML()

    # Connect events
    load_button.click(
        load_url, 
        inputs=url_input, 
        outputs=[news_title, news_content, news_image]
        )
    replace_button.click(replace_text,
                        inputs=[news_title, news_content, replace_df], 
                        outputs=[news_title, news_content])
    generate_text_button.click(generate_fake_text, 
                        inputs=[text_generation_model, news_title, news_content], 
                        outputs=[news_title, news_content])
    generate_image_button.click(generate_fake_image, 
                        inputs=[image_generation_model, news_title], 
                        outputs=[news_image])
    detection_button.click(generate_analysis_report,
                            inputs=[news_title, news_content, news_image],
                            outputs=[analyzed_information, detailed_analysis]) 

    # change Image
    #url_input.change(load_image, inputs=url_input, outputs=image_view) 
    
    gr.Examples(
        examples=[
            ["https://www.bbc.com/travel/article/20250127-one-of-the-last-traders-on-the-silk-road"],
            ["https://bbc.com/future/article/20250110-how-often-you-should-wash-your-towels-according-to-science"],
        ],
        inputs=[url_input],
        label="Examples",
        example_labels=[
            "BBC news 1",
            "BBC news 2",
        ],
    )

demo.launch()


# https://www.bbc.com/travel/article/20250127-one-of-the-last-traders-on-the-silk-road
# https://bbc.com/future/article/20250110-how-often-you-should-wash-your-towels-according-to-science