Spaces:
Sleeping
Sleeping
File size: 26,343 Bytes
22e1b62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
import os
import shutil
from copy import deepcopy
import numpy as np
from config import (
BART,
BATCH_SIZE,
HUMAN_LABEL,
LEARNING_RATES,
MACHINE_LABEL,
MODEL_NAME,
MULTIMODEL,
NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING,
OPTIMIZED_METRIC,
PATIENCE,
ROBERTA_MODEL_PATHS,
SINGLE_FROM_MULTIMODEL,
TRAIN_RATIO,
VAL_RATIO,
tokenizer,
)
from datasets import Dataset
from sklearn.base import accuracy_score
from sklearn.metrics import roc_auc_score
from sklearn.neural_network import MLPClassifier
from transformers import (
AutoModelForSequenceClassification,
DataCollatorWithPadding,
EarlyStoppingCallback,
Trainer,
TrainerCallback,
TrainingArguments,
)
from texts.bart_score import (
bart_score_in_batch,
extract_feature_in_batch,
)
from texts.config import OUTPUT_FILE
from texts.evaluation import compute_metrics
from texts.utils import (
check_error,
combine_text_with_BERT_format,
parse_multimodal_data,
write_to_file,
)
class TextDetector:
def __init__(self) -> None:
self.model = None
self.multimodel = None
self.train_data = None
self.val_data = None
self.test_data = None
self.train_features = None
self.val_features = None
self.test_features
def text_analysis(text: str) -> float:
score = 0.0
return score
class CustomCallback(TrainerCallback):
"""
Custom callback to evaluate the training dataset at the end of each epoch.
"""
def __init__(self, trainer) -> None:
super().__init__()
self._trainer = trainer
def on_epoch_end(self, args, state, control, **kwargs):
"""
At the end of each epoch, evaluate the training dataset.
"""
if control.should_evaluate:
control_copy = deepcopy(control)
self._trainer.evaluate(
eval_dataset=self._trainer.train_dataset,
metric_key_prefix="train",
)
return control_copy
def abstract_train(features, labels):
"""
Trains a model using the given features and labels.
Args:
features (list): The input features for training.
labels (list): The target labels for training.
Returns:
object: The trained model.
"""
model = MLPClassifier()
model.fit(features, labels)
return model
def evaluate_model(model, features, labels):
"""
Evaluates the model's performance using accuracy and ROC AUC scores.
Args:
model (object): The trained model to evaluate.
features (list): The input features for evaluation.
labels (list): The target labels for evaluation.
Returns:
None
"""
predictions = model.predict(features)
rounded_predictions = [round(value) for value in predictions]
accuracy = accuracy_score(labels, rounded_predictions)
write_to_file(OUTPUT_FILE, f"Accuracy: {accuracy * 100.0:.1f}%\n")
roc_auc = roc_auc_score(labels, rounded_predictions)
write_to_file(OUTPUT_FILE, f"ROC AUC: {roc_auc * 100.0:.1f}%\n")
def preprocess_function_multimodel(sample):
"""
Preprocesses a given sample for a multi-model setup by calculating
BART scores and formatting the text for BERT input.
Args:
sample (dict): A dictionary containing a key "text", which is a list of
lists of strings.
Returns:
dict: A dictionary containing tokenized and preprocessed text data.
"""
num_texts = len(sample["text"][0]) # Number of texts in each sub-sample
texts_grouped_by_index = [
[] for _ in range(num_texts)
] # Initialize empty lists for grouping texts by index
# Group texts by their index across sub-samples
for sub_sample in sample["text"]:
for i in range(num_texts):
texts_grouped_by_index[i].append(sub_sample[i])
# Calculate BART scores for each text pair (text[0] with text[i])
bart_scores = [
bart_score_in_batch(
texts_grouped_by_index[0],
texts_grouped_by_index[i],
)
for i in range(1, num_texts)
]
combined_texts = []
# Process each sub-sample for BERT input
for index, sub_sample in enumerate(sample["text"]):
text_array = [sub_sample[0]] # Start with the input text
score_generation_pairs = []
# Pair scores with their corresponding generations
for i in range(1, num_texts):
generation_text = sub_sample[i]
generation_score = bart_scores[i - 1][index]
score_generation_pairs.append((generation_score, generation_text))
# Sort pairs by score in descending order
sorted_pairs = sorted(score_generation_pairs, reverse=True)
# Append sorted texts to text_array
for _, sorted_text in sorted_pairs:
text_array.append(sorted_text)
# Combine texts into a single BERT-formatted string
combined_text = combine_text_with_BERT_format(text_array)
combined_texts.append(combined_text)
# Tokenize the combined texts for BERT
return tokenizer(combined_texts, add_special_tokens=False, truncation=True)
def preprocess_function_single_from_multimodel(sample):
"""
Extracts the first text from each sub-sample in a multi-model sample and
tokenizes it.
Args:
sample (dict): A dictionary containing a key "text", which is a list of
lists of strings.
Returns:
dict: A dictionary containing tokenized text data.
"""
combined_texts = []
# Iterate through each sub-sample
for sub_sample in sample["text"]:
input_text = sub_sample[
0
] # Extract the first text from the sub-sample
combined_texts.append(
input_text,
) # Append it to the list of combined texts
# Tokenize the combined texts
return tokenizer(combined_texts, truncation=True)
def train_only_by_transformer_with_test_evaluation_early_stop(
train_data,
test_data,
input_type,
num_classes=2,
):
"""
Trains a transformer model using the provided training and testing
datasets with early stopping.
Args:
train_data (Dataset): The training dataset.
test_data (Dataset): The testing dataset.
input_type (str): The type of input data, either MULTIMODEL or
SINGLE_FROM_MULTIMODEL.
num_classes (int, optional): The number of classes for classification.
Defaults to 2.
Returns:
Trainer: The trained model wrapped in a Trainer object.
"""
# Preprocess datasets based on the input type
if input_type == MULTIMODEL:
train_data = train_data.map(
preprocess_function_multimodel,
batched=True,
)
test_data = test_data.map(preprocess_function_multimodel, batched=True)
elif input_type == SINGLE_FROM_MULTIMODEL:
train_data = train_data.map(
preprocess_function_single_from_multimodel,
batched=True,
)
test_data = test_data.map(
preprocess_function_single_from_multimodel,
batched=True,
)
# Data collator to pad inputs
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# Load appropriate model based on number of classes
if num_classes == 3:
model = AutoModelForSequenceClassification.from_pretrained(
"pretrained_model/roberta-base_num_labels_3",
num_labels=num_classes,
)
else:
model = AutoModelForSequenceClassification.from_pretrained(
ROBERTA_MODEL_PATHS[MODEL_NAME],
num_labels=num_classes,
)
learning_rate = LEARNING_RATES[MODEL_NAME]
output_folder = "training_with_callbacks"
# Remove the output folder if it already exists
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
# Training arguments
training_args = TrainingArguments(
output_dir=output_folder,
evaluation_strategy="epoch",
logging_strategy="epoch",
save_strategy="epoch",
learning_rate=learning_rate,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
num_train_epochs=NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING,
weight_decay=0.01,
push_to_hub=False,
metric_for_best_model=OPTIMIZED_METRIC,
load_best_model_at_end=True,
)
# Create Trainer object
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_data,
eval_dataset=test_data,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=[EarlyStoppingCallback(early_stopping_patience=PATIENCE)],
)
# Add custom callback
trainer.add_callback(CustomCallback(trainer))
# Start training
trainer.train()
return trainer
def create_pair_sample(data_item, training_indices):
"""
Creates pair samples for training by comparing human data with
machine-generated data.
Args:
data_item (dict): A dictionary containing 'human', 'single',
and 'pair' data.
training_indices (list): A list of indices used for training.
Returns:
list: A list of dictionaries, each containing a 'text' array
and a 'label'.
"""
# Initialize the result list
result_samples = []
# Check if there is any error in the data_item
if check_error(data_item):
return result_samples
# Create machine samples
for train_idx in training_indices:
if data_item["human"] != data_item["single"][train_idx]:
text_array = []
machine_text = data_item["single"][train_idx]
text_array.append(machine_text)
for sub_idx in training_indices:
text_array.append(data_item["pair"][train_idx][sub_idx])
sample = {
"text": text_array,
"label": MACHINE_LABEL,
}
result_samples.append(sample)
# Create human samples
text_array = [data_item["human"]]
for train_idx in training_indices:
text_array.append(data_item["single"][train_idx])
human_sample = {
"text": text_array,
"label": HUMAN_LABEL,
}
# Append human samples for each machine sample
num_machine_samples = len(result_samples)
for _ in range(num_machine_samples):
result_samples.append(human_sample)
return result_samples
def create_pair_test_sample(data_item, training_indices, testing_indices):
"""
Creates pair test samples by comparing human data with
machine-generated data.
Args:
data_item (dict): A dictionary containing 'human', 'single', and
'pair' data.
training_indices (list): A list of indices used for training.
testing_indices (list): A list of indices used for testing.
Returns:
list: A list of dictionaries, each containing a 'text' array and a
'label'.
"""
# Initialize the result list
result_samples = []
# Check if there is any error in the data_item
if check_error(data_item):
return result_samples
# Create machine samples based on testing indices
for test_idx in testing_indices:
if data_item["human"] != data_item["single"][test_idx]:
text_array = []
machine_text = data_item["single"][test_idx]
text_array.append(machine_text)
for train_idx in training_indices:
text_array.append(data_item["pair"][test_idx][train_idx])
sample = {
"text": text_array,
"label": MACHINE_LABEL,
}
result_samples.append(sample)
# Create human sample
text_array = [data_item["human"]]
for train_idx in training_indices:
text_array.append(data_item["single"][train_idx])
human_sample = {
"text": text_array,
"label": HUMAN_LABEL,
}
# Append the human sample for each machine sample
num_machine_samples = len(result_samples)
for _ in range(num_machine_samples):
result_samples.append(human_sample)
return result_samples
def create_train_val_sample(data, training_indices):
"""
Creates training and validation samples from the provided data.
Args:
data (list): A list of data items, each to be processed.
training_indices (list): A list of indices used for training.
Returns:
list: A list of training and validation samples created from the data.
"""
# Initialize the result list
result_samples = []
# Process each item in the data
for data_item in data:
# Create pair samples for the current item
sub_samples = create_pair_sample(data_item, training_indices)
# Extend the result list with the created sub-samples
result_samples.extend(sub_samples)
return result_samples
def create_test_sample(data, training_indices, testing_indices):
"""
Creates test samples from the provided data by comparing human data with
machine-generated data.
Args:
data (list): A list of data items, each to be processed.
training_indices (list): A list of indices used for training.
testing_indices (list): A list of indices used for testing.
Returns:
list: A list of test samples created from the data.
"""
# Initialize the result list
result_samples = []
# Process each item in the data
for data_item in data:
# Create pair test samples for the current item
sub_samples = create_pair_test_sample(
data_item,
training_indices,
testing_indices,
)
# Extend the result list with the created sub-samples
result_samples.extend(sub_samples)
return result_samples
def distribute_data(data, train_indices, test_indices, train_ratio, val_ratio):
"""
Distributes the data into training, validation, and test samples.
Args:
data (list): A list of data items to be split and processed.
train_indices (list): A list of indices used for training.
test_indices (list): A list of indices used for testing.
train_ratio (float): The ratio of data to be used for training.
val_ratio (float): The ratio of data to be used for validation.
Returns:
tuple: A tuple containing lists of training, validation,
and test samples.
"""
# Split the data into training, validation, and test sets
train_data, val_data, test_data = split_train_val_test(
data,
train_ratio,
val_ratio,
)
# Create training samples
train_samples = create_train_val_sample(train_data, train_indices)
write_to_file(OUTPUT_FILE, f"train samples = {len(train_samples)}\n")
# Create validation samples
val_samples = create_train_val_sample(val_data, train_indices)
write_to_file(OUTPUT_FILE, f"val samples = {len(val_samples)}\n")
# Create test samples
test_samples = create_test_sample(test_data, train_indices, test_indices)
write_to_file(OUTPUT_FILE, f"test samples = {len(test_samples)}\n")
return train_samples, val_samples, test_samples
def convert_to_huggingface_with_multimodel(samples):
"""
Converts a list of samples to the Hugging Face Dataset format.
Args:
samples (list): A list of samples to be converted.
Returns:
Dataset: A Hugging Face Dataset object created from the samples.
"""
return Dataset.from_list(samples)
def train_by_transformer_with_multimodel_and_early_stop(
train_samples,
val_samples,
input_type,
):
"""
Trains a transformer model with multimodal data and early stopping.
Args:
train_samples (list): A list of training samples.
val_samples (list): A list of validation samples.
input_type (str): The type of input data (e.g., multimodal).
Returns:
object: The trained model with early stopping.
"""
# Convert training and validation samples to Hugging Face Dataset format
train_data = convert_to_huggingface_with_multimodel(train_samples)
val_data = convert_to_huggingface_with_multimodel(val_samples)
# Train the model with early stopping and return the trained model
return train_only_by_transformer_with_test_evaluation_early_stop(
train_data,
val_data,
input_type,
)
def test_by_transformer_with_multimodel(detector, test_samples, input_type):
"""
Tests a trained transformer model with multimodal data.
Args:
detector (object): The trained model to be evaluated.
test_samples (list): A list of test samples.
input_type (str): The type of input data (e.g., multimodal).
Returns:
None
"""
# Convert test samples to Hugging Face Dataset format
test_data = convert_to_huggingface_with_multimodel(test_samples)
# Apply the appropriate preprocessing function based on the input type
if input_type == MULTIMODEL:
test_data = test_data.map(preprocess_function_multimodel, batched=True)
elif input_type == SINGLE_FROM_MULTIMODEL:
test_data = test_data.map(
preprocess_function_single_from_multimodel,
batched=True,
)
# Evaluate the model on the test data
result = detector.evaluate(eval_dataset=test_data)
# Extract and log the ROC AUC score
roc_auc = result["eval_roc_auc"]
write_to_file(OUTPUT_FILE, "roc_auc: %.1f%%" % (roc_auc * 100.0) + "\n")
def extract_by_feature_kind(samples, feature_type):
"""
Extracts features from the given samples based on the specified feature
type.
Args:
samples (list): A list of samples where each sample is a dictionary
with 'text' and 'label' keys.
feature_type (str): The type of feature to extract.
Returns:
tuple: A tuple containing the extracted features and corresponding
labels.
"""
text_1_list = []
text_2_list = []
labels = []
for sample in samples:
text_1_list.append(sample["text"][0])
text_2_list.append(sample["text"][1])
labels.append(sample["label"])
# Extract features in batch based on the feature type
features = extract_feature_in_batch(text_1_list, text_2_list, feature_type)
return features, labels
def train_by_feature_kind(train_samples, feature_type):
"""
Trains a model using features extracted from the training samples based on
the specified feature type.
Args:
train_samples (list): A list of training samples where each sample is
a dictionary with 'text' and 'label' keys.
feature_type (str): The type of feature to extract for training.
Returns:
object: The trained model.
"""
# Extract features and labels from the training samples
features, labels = extract_by_feature_kind(train_samples, feature_type)
# Convert features to a numpy array and reshape for training
features = np.array(features)
features = features.reshape(-1, 1)
# Train the model using the extracted features and labels
model = abstract_train(features, labels)
return model
def test_by_feature_kind(detector, samples, feature_type):
"""
Tests a detector using features extracted from the provided samples based
on the specified feature type.
Args:
detector (object): The detector model to be evaluated.
samples (list): A list of samples where each sample is a dictionary
with 'text' and 'label' keys.
feature_type (str): The type of feature to extract for testing.
Returns:
None
"""
# Extract features and labels from the samples
features, labels = extract_by_feature_kind(samples, feature_type)
# Convert features to a numpy array and reshape for evaluation
features = np.array(features)
features = features.reshape(-1, 1)
# Evaluate the detector model using the extracted features and labels
evaluate_model(detector, features, labels)
def general_process_multimodels_train_val_test(
train_samples,
val_samples,
test_samples,
):
"""
General process for training, validating, and testing models using
multi-model and feature kind approaches.
Args:
train_samples (list): Training samples.
val_samples (list): Validation samples.
test_samples (list): Test samples.
Returns:
None
"""
# Multi-model approach
input_kind = MULTIMODEL
write_to_file(OUTPUT_FILE, "\nInput kind = {input_kind} \n")
# Train detector using multi-model with early stopping
detector = train_by_transformer_with_multimodel_and_early_stop(
train_samples,
val_samples,
input_kind,
)
# Evaluate on train set
write_to_file(OUTPUT_FILE, "EVALUATE ON TRAIN SET \n")
test_by_transformer_with_multimodel(detector, train_samples, input_kind)
# Evaluate on validation set
write_to_file(OUTPUT_FILE, "EVALUATE ON VALIDATION SET \n")
test_by_transformer_with_multimodel(detector, val_samples, input_kind)
# Evaluate on test set
write_to_file(OUTPUT_FILE, "EVALUATE ON TEST SET \n")
test_by_transformer_with_multimodel(detector, test_samples, input_kind)
# Single from multi-model approach
input_kind = SINGLE_FROM_MULTIMODEL
write_to_file(OUTPUT_FILE, "\nInput kind = {input_kind} \n")
# Train detector using single from multi-model with early stopping
detector = train_by_transformer_with_multimodel_and_early_stop(
train_samples,
val_samples,
input_kind,
)
# Evaluate on train set
write_to_file(OUTPUT_FILE, "EVALUATE ON TRAIN SET \n")
test_by_transformer_with_multimodel(detector, train_samples, input_kind)
# Evaluate on validation set
write_to_file(OUTPUT_FILE, "EVALUATE ON VALIDATION SET \n")
test_by_transformer_with_multimodel(detector, val_samples, input_kind)
# Evaluate on test set
write_to_file(OUTPUT_FILE, "EVALUATE ON TEST SET \n")
test_by_transformer_with_multimodel(detector, test_samples, input_kind)
# Feature kind approach
sample_length = len(train_samples[0]["text"])
if (
sample_length == 2
): # Check if the sample length is 2, indicating BART feature kind
feature_kind = BART
write_to_file(OUTPUT_FILE, "\nFeature kind = {feature_kind} \n")
# Train detector using feature kind
detector = train_by_feature_kind(train_samples, feature_kind)
# Evaluate on train set
write_to_file(OUTPUT_FILE, "EVALUATE ON TRAIN SET \n")
test_by_feature_kind(detector, train_samples, feature_kind)
# Evaluate on validation set
write_to_file(OUTPUT_FILE, "EVALUATE ON VALIDATION SET \n")
test_by_feature_kind(detector, val_samples, feature_kind)
# Evaluate on test set
write_to_file(OUTPUT_FILE, "EVALUATE ON TEST SET \n")
test_by_feature_kind(detector, test_samples, feature_kind)
def process_multi_models_with_validation(
multimodel_csv_file,
train_indices,
test_indices,
num_samples,
):
"""
Processes multi-model data with validation, training, and testing.
Args:
multimodel_csv_file (str): Path to the CSV file containing
multi-model data.
train_indices (list): Indices for the training data.
test_indices (list): Indices for the testing data.
num_samples (int): Number of samples to process.
Returns:
None
"""
# Log the details of the process
write_to_file(OUTPUT_FILE, f"PROCESSING FILE={multimodel_csv_file} \n")
write_to_file(OUTPUT_FILE, f"EXPERIMENT WITH {MODEL_NAME} model \n")
write_to_file(
OUTPUT_FILE,
f"NUMBER OF MAX EPOCHS WITH EARLY STOPPING =\
{NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING} \n",
)
write_to_file(OUTPUT_FILE, f"PATIENCE = {PATIENCE} \n")
write_to_file(OUTPUT_FILE, f"OPTIMIZED METRIC = {OPTIMIZED_METRIC} \n")
write_to_file(OUTPUT_FILE, f"BATCH SIZE = {BATCH_SIZE} \n")
write_to_file(OUTPUT_FILE, f"Number of samples = {num_samples} \n")
# Read multi-model data from the CSV file
data = parse_multimodal_data(multimodel_csv_file)
# Limit data to the specified number of samples
data = data[:num_samples]
# Distribute data into training, validation, and testing sets
train_samples, val_samples, test_samples = distribute_data(
data,
train_indices,
test_indices,
TRAIN_RATIO,
VAL_RATIO,
)
# Log the training and testing indices
write_to_file(
OUTPUT_FILE,
f"Multimodel training with train indices {train_indices},\
test with test indices {test_indices} \n",
)
# Process the multi-models for training, validation, and testing
general_process_multimodels_train_val_test(
train_samples,
val_samples,
test_samples,
)
def split_train_val_test(data, train_ratio, val_ratio):
"""
Splits the dataset into training, validation, and test sets based on
specified ratios.
Args:
data (list): The dataset to be split.
train_ratio (float): The ratio of the dataset to be used for training.
val_ratio (float): The ratio of the dataset to be used for validation.
Returns:
tuple: A tuple containing three lists
(train_data, val_data, test_data).
"""
# Calculate the number of samples for the training set
num_train_samples = int(len(data) * train_ratio)
# Calculate the number of samples for the validation set
num_val_samples = int(len(data) * val_ratio)
# Split the data into training, validation, and test sets
train_data = data[:num_train_samples]
val_data = data[num_train_samples : (num_train_samples + num_val_samples)]
test_data = data[(num_train_samples + num_val_samples) :]
return train_data, val_data, test_data
|