Spaces:
Sleeping
Sleeping
File size: 12,718 Bytes
56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 26e3944 56cf7e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import colorsys
import json
import re
import openai
from dotenv import load_dotenv
import os
from transformers import pipeline
import gradio as gr
ner_pipeline = pipeline("ner")
load_dotenv()
AZURE_OPENAI_API_KEY = os.getenv('AZURE_OPENAI_API_KEY')
AZURE_OPENAI_ENDPOINT = os.getenv('AZURE_OPENAI_ENDPOINT')
AZURE_OPENAI_API_VERSION = os.getenv('AZURE_OPENAI_API_VERSION')
client = openai.AzureOpenAI(
api_version = "2024-05-01-preview", # AZURE_OPENAI_API_VERSION,
api_key = AZURE_OPENAI_API_KEY,
azure_endpoint = AZURE_OPENAI_ENDPOINT,
)
def extract_entities_gpt(original_text, compared_text, text_generation_model="o1-mini"):
# "gpt-4o-mini" or "o1-mini"
# Generate text using the selected models
prompt = f"""
Compare the ORIGINAL TEXT and the COMPARED TEXT.
Identify and extract pairs of corresponding entities where the paraphrasing has resulted in a *significant* change in meaning.
Focus *only* on entities where the paraphrasing has resulted in a *significant* change in meaning. This includes, but is not limited to:
* **Numerical changes:** e.g., "five" changed to "ten," "10%" changed to "50%"
* **Time changes:** e.g., "Monday" changed to "Sunday," "10th" changed to "21st"
* **Name changes:** e.g., "Tokyo" changed to "New York," "Japan" changed to "Japanese"
* **Opposite meanings:** e.g., "increase" changed to "decrease," "good" changed to "bad"
* **Semantically different words:** e.g., "car" changed to "truck," "walk" changed to "run"
Exclude entities where the meaning remains essentially the same, even if the wording is different (e.g., "big" changed to "large," "house" changed to "residence"). Also exclude purely stylistic changes that don't affect the core meaning.
Output the extracted entity pairs, one pair per line, in the following JSON-like list format without wrapping characters:
[
["ORIGINAL_TEXT_entity_1", "COMPARED_TEXT_entity_1"],
["ORIGINAL_TEXT_entity_2", "COMPARED_TEXT_entity_2"]
]
If there are no entities that satisfy above condition, output empty list "[]".
---
# ORIGINAL TEXT:
{original_text}
---
# COMPARED TEXT:
{compared_text}
"""
# Generate text using the text generation model
# Generate text using the selected model
try:
response = client.chat.completions.create(
model=text_generation_model,
messages = [{"role": "user", "content": prompt}],
)
res = response.choices[0].message.content
except openai.OpenAIError as e:
print(f"Error interacting with OpenAI API: {e}")
res = ""
return res
def read_json(json_string) -> list[list[str]]:
try:
entities = json.loads(json_string)
# Remove duplicates pair of entities
unique_entities = []
for inner_list in entities:
if inner_list not in unique_entities:
unique_entities.append(inner_list)
return unique_entities
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
return []
def lighten_color(hex_color, factor=1.8):
"""Lightens a HEX color by increasing its brightness in HSV space."""
hex_color = hex_color.lstrip("#")
r, g, b = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16)
# Convert to HSV
h, s, v = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)
v = min(1.0, v * factor) # Increase brightness
# Convert back to HEX
r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(h, s, v)]
return f'#{r:02x}{g:02x}{b:02x}'
def darken_color(hex_color, factor=0.7):
"""Darkens a hex color by reducing its brightness in the HSV space."""
hex_color = hex_color.lstrip("#")
r, g, b = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16)
# Convert to HSV to adjust brightness
h, s, v = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)
v = max(0, v * factor) # Reduce brightness
# Convert back to HEX
r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(h, s, v)]
return f'#{r:02x}{g:02x}{b:02x}'
def generate_color(index, total_colors=20):
"""Generates a unique, evenly spaced color for each index using HSL."""
hue = index / total_colors # Spread hues in range [0,1]
saturation = 0.65 # Keep colors vivid
lightness = 0.75 # Balanced brightness
# Convert HSL to RGB
r, g, b = colorsys.hls_to_rgb(hue, lightness, saturation)
r, g, b = int(r * 255), int(g * 255), int(b * 255)
return f'#{r:02x}{g:02x}{b:02x}' # Convert to hex
def assign_colors_to_entities(entities):
total_colors = len(entities)
# Assign colors to entities
entities_colors = []
for index, entity in enumerate(entities):
color = generate_color(index, total_colors)
# append color and index to entities_colors
entities_colors.append({"color": color, "input": entity[0], "source": entity[1]})
return entities_colors
def highlight_entities(text1, text2):
if text1 == "" or text2 == "":
return []
entities_text = extract_entities_gpt(text1, text2)
print(f"entities_text: {entities_text}")
# Clean up entities: remove wrapping characters
entities_text = entities_text.replace("```json", "").replace("```", "")
entities = read_json(entities_text)
# Assign colors to entities
entities_with_colors = assign_colors_to_entities(entities)
return entities_with_colors
def apply_highlight(text, entities_with_colors, key="input", count = 0):
if entities_with_colors == []:
return text, []
all_starts = []
all_ends = []
highlighted_text = ""
temp_text = text
for index, entity in enumerate(entities_with_colors):
highlighted_text = ""
# find a list of starts and ends of entity in text:
starts = [m.start() for m in re.finditer(entity[key], temp_text)]
ends = [m.end() for m in re.finditer(entity[key], temp_text)]
all_starts.extend(starts)
all_ends.extend(ends)
color = entities_with_colors[index]["color"]
entity_color = lighten_color(color, factor=2.2) # Lightened color for background text
label_color = darken_color(entity_color, factor=0.7) # Darker color for background label (index)
# Apply highlighting to each entity
prev_end = 0
for start, end in zip(starts, ends):
# Append non-highlighted text
highlighted_text += temp_text[prev_end:start]
# Style the index as a label
index_label = (f'<span_style="background-color:{label_color};color:white;'
f'padding:1px_4px;border-radius:4px;font-size:12px;'
f'font-weight:bold;display:inline-block;margin-right:4px;">{index + 1 + count}</span>')
# Append highlighted text with index label
highlighted_text += (f'\n<span_style="background-color:{entity_color};color:black;'
f'border-radius:3px;font-size:14px;display:inline-block;">'
f'{index_label}{temp_text[start:end]}</span>\n')
prev_end = end
highlighted_text += temp_text[prev_end:]
temp_text = highlighted_text
if highlighted_text == "":
return text, []
highlight_idx_list = get_index_list(highlighted_text)
return highlighted_text, highlight_idx_list
def get_index_list(highlighted_text):
"""
Generates a list of indices between corresponding start and end indices.
Args:
starts: A list of starting indices.
ends: A list of ending indices. Must be the same length as starts.
Returns:
A list containing all indices within the specified ranges.
Returns an empty list if the input is invalid (e.g., different lengths,
end < start, etc.).
"""
highlighted_index = []
words = highlighted_text.split()
for index, word in enumerate(words):
if word.startswith("<span_style"):
start_index = index
if word.endswith("</span>"):
end_index = index
highlighted_index.extend(list(range(start_index, end_index + 1)))
return highlighted_index
def extract_entities(text):
output = ner_pipeline(text)
words = extract_words(output)
words = combine_subwords(words)
# extract word in each entity and assign to a list of entities, connect words if there is no space between them
entities = []
for entity in words:
if entity not in entities:
entities.append(entity)
return entities
def extract_words(entities):
"""
Extracts the words from a list of entities.
Args:
entities: A list of entities.
Returns:
A list of words extracted from the entities.
"""
words = []
for entity in entities:
words.append(entity["word"])
return words
def combine_subwords(word_list):
"""
Combines subwords (indicated by "##") with the preceding word in a list.
Args:
word_list: A list of words, where subwords are prefixed with "##".
Returns:
A new list with subwords combined with their preceding words.
"""
result = []
i = 0
while i < len(word_list):
if word_list[i].startswith("##"):
result[-1] += word_list[i][2:] # Remove "##" and append to the previous word
elif i < len(word_list) - 2 and word_list[i + 1] == "-": # Combine hyphenated words
result.append(word_list[i] + word_list[i + 1] + word_list[i + 2])
i += 2 # Skip the next two words
else:
result.append(word_list[i])
i += 1
return result
original_text = """
Title: UK pledges support for Ukraine with 100-year pact
Content: Sir Keir Starmer has pledged to put Ukraine in the "strongest possible position" on a trip to Kyiv where he signed a "landmark" 100-year pact with the war-stricken country. The prime minister's visit on Thursday was at one point marked by loud blasts and air raid sirens after a reported Russian drone attack was intercepted by Ukraine's defence systems. Acknowledging the "hello" from Russia, Volodymyr Zelensky said Ukraine would send its own "hello back". An estimated one million people have been killed or wounded in the war so far. As the invasion reaches the end of its third year, Ukraine is losing territory in the east. Zelensky praised the UK's commitment on Thursday, amid wider concerns that the US President-elect Donald Trump, who is set to take office on Monday, could potentially reduce aid.
"""
compared_text = """
Title: Japan pledges support for Ukraine with 100-year pact
Content: A leading Japanese figure has pledged to put Ukraine in the "strongest possible position" on a trip to Kyiv where they signed a "landmark" 100-year pact with the war-stricken country. The visit on Thursday was at one point marked by loud blasts and air raid sirens after a reported Russian drone attack was intercepted by Ukraine's defence systems. Acknowledging the "hello" from Russia, Volodymyr Zelensky said Ukraine would send its own "hello back". An estimated one million people have been killed or wounded in the war so far. As the invasion reaches the end of its third year, Ukraine is losing territory in the east. Zelensky praised Japan's commitment on Thursday, amid wider concerns that the next US President, who is set to take office on Monday, could potentially reduce aid.
"""
if __name__ == "__main__":
# text = "The Saudi authorities, I am told, are currently working flat out" \
# "to collate everything they have on the Magdeburg market suspect," \
# "Taleb al-Abdulmohsen, and to share it with Germany's ongoing" \
# "investigation"
# print(extract_entities(text))
with gr.Blocks() as demo:
gr.Markdown("### Highlight Matching Parts Between Two Paragraphs")
text1_input = gr.Textbox(
label="Paragraph 1",
lines=5,
value=original_text,
)
text2_input = gr.Textbox(
label="Paragraph 2",
lines=5,
value=compared_text,
)
submit_button = gr.Button("Highlight Matches")
output1 = gr.HTML("<br>"*10)
output2 = gr.HTML("<br>"*10)
submit_button.click(
fn=highlight_entities,
inputs=[text1_input, text2_input],
outputs=[output1, output2]
)
# Launch the Gradio app
demo.launch()
|