File size: 5,004 Bytes
22e1b62
 
 
 
 
 
 
 
1ce1659
22e1b62
1ce1659
 
 
 
 
 
 
 
 
 
 
 
 
 
22e1b62
 
 
 
1ce1659
 
22e1b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce1659
 
22e1b62
 
 
1ce1659
22e1b62
 
1ce1659
22e1b62
1ce1659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e1b62
1ce1659
22e1b62
1ce1659
 
 
 
 
 
 
22e1b62
1ce1659
 
 
 
 
22e1b62
 
 
 
 
1ce1659
22e1b62
1ce1659
 
 
 
 
 
 
 
 
 
 
 
 
22e1b62
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os

import gradio as gr
import openai
import requests
from PIL import Image
import re

from src.application.content_detection import generate_analysis_report
from src.application.url_reader import URLReader
from src.application.content_generation import generate_content, replace_text

# from dotenv import load_dotenv

# load_dotenv()
# AZURE_OPENAI_API_KEY = os.getenv('AZURE_OPENAI_API_KEY')
# AZURE_OPENAI_ENDPOINT = os.getenv('AZURE_OPENAI_ENDPOINT')
# AZURE_OPENAI_API_VERSION = os.getenv('AZURE_OPENAI_API_VERSION')

# client = openai.AzureOpenAI(
#     api_version = AZURE_OPENAI_API_VERSION,
#     api_key = AZURE_OPENAI_API_KEY,  
#     azure_endpoint = AZURE_OPENAI_ENDPOINT,
#     )

GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
SEARCH_ENGINE_ID = os.getenv('SEARCH_ENGINE_ID')

AZURE_OPENAI_MODEL = ["gpt-4o-mini", "gpt-4o"]

def load_url(url):
    """
    Load content from the given URL.
    """
    content = URLReader(url)
    image = None
    header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36'}
    try:
        response = requests.get(
            url, 
            headers = header,
            stream = True
        )
        response.raise_for_status()  # Raise an exception for bad status codes
        
        image_response = requests.get(content.top_image, stream=True)
        try:
            image = Image.open(image_response.raw)
        except:
            print(f"Error loading image from {content.top_image}")
            
    except (requests.exceptions.RequestException, FileNotFoundError) as e:
        print(f"Error fetching image: {e}")

    return content.title, content.text, image

def show_detailed_analysis(title):
    return f"More details of {title} will be shown here."

# Define the GUI
with gr.Blocks() as demo:
    gr.Markdown("# FAKE NEWS DETECTION")

    with gr.Row():
        # SETTINGS 
        with gr.Column(scale=1):
            with gr.Accordion("Settings"):
                gr.Markdown("This tool generates fake news by modifying the content of a given URL.")

                with gr.Accordion("1. Enter a URL"):
                    url_input = gr.Textbox(
                        label="URL",
                        value="https://bbc.com/future/article/20250110-how-often-you-should-wash-your-towels-according-to-science",
                        )
                    load_button = gr.Button("Load URL")
                    
                with gr.Accordion("2. Select a content-generation model", open=True):
                    with gr.Row():
                        text_generation_model = gr.Dropdown(choices=AZURE_OPENAI_MODEL, label="Text-generation model")
                        image_generation_model = gr.Dropdown(choices=["Dall-e", "Stable Diffusion"], label="Image-generation model")
                    generate_button = gr.Button("Random generation")

                with gr.Accordion("3. Replace any terms", open=True):
                    replace_df = gr.Dataframe(
                        headers=["Find what:", "Replace with:"],
                        datatype=["str", "str"],
                        row_count=(1, "dynamic"),
                        col_count=(2, "fixed"),
                        interactive=True
                    )
                    replace_button = gr.Button("Replace all")

        # GENERATED CONTENT
        with gr.Column(scale=1):
            with gr.Accordion("Generated News Contents"):
                detection_button = gr.Button("Check for fake news")
                news_title = gr.Textbox(label="Title", value="")
                news_image = gr.Image(label="Image") 
                news_content = gr.Textbox(label="Content", value="", lines=12)

        # FAKE NEWS ANALYSIS REPORT
        with gr.Column(scale=1):
            with gr.Accordion("Fake News Analysis"):
                html_out = gr.HTML() 
                detailed_analysis_button = gr.Button("Show detailed analysis...")

    # Connect events
    load_button.click(
        load_url, 
        inputs=url_input, 
        outputs=[news_title, news_content, news_image]
        )
    replace_button.click(replace_text, 
                        inputs=[news_title, news_content, replace_df], 
                        outputs=[news_title, news_content])
    generate_button.click(generate_content, 
                        inputs=[text_generation_model, image_generation_model, news_title, news_content], 
                        outputs=[news_title, news_content])
    detection_button.click(generate_analysis_report,
                           inputs=[news_title, news_content, news_image],
                           outputs=html_out) 
    detailed_analysis_button.click(show_detailed_analysis,
                                   inputs=[news_title],
                                   outputs=[html_out])
    # change Image
    #url_input.change(load_image, inputs=url_input, outputs=image_view) 

demo.launch()