Spaces:
Sleeping
Sleeping
File size: 6,725 Bytes
0827f9d 1ce1659 38fd181 1ce1659 0542c93 1ce1659 0827f9d 56cf7e3 1ce1659 38fd181 1ce1659 38fd181 0827f9d 38fd181 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 38fd181 1ce1659 38fd181 0827f9d 1ce1659 38fd181 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 38fd181 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 38fd181 1ce1659 38fd181 0827f9d 1ce1659 38fd181 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 38fd181 0827f9d 38fd181 0827f9d 1ce1659 0827f9d 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 0827f9d 1ce1659 0827f9d 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 38fd181 1ce1659 504f37b 38fd181 0827f9d 1ce1659 504f37b 38fd181 b489aea 38fd181 1ce1659 504f37b 38fd181 0827f9d 504f37b 38fd181 504f37b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
"""
Author: Khanh Phan
Date: 2024-12-04
"""
import string
from collections import Counter
import requests
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from src.application.config import (
CHUNK_SIZE,
GOOGLE_API_KEY,
GOOGLE_ENDPOINT_URL,
NUM_CHUNKS,
NUM_FREQUENT_WORDS,
NUM_KEYWORDS,
SEARCH_ENGINE_ID,
STOPWORDS_LANG,
TOP_SEARCH_RESUTLS,
)
from src.application.text.entity import extract_entities
def search_by_google(
query,
num_results=TOP_SEARCH_RESUTLS,
is_exact_terms=False,
) -> dict:
"""
Performs a Google Custom Search API query.
Args:
query (str): The search query string.
num_results (int, optional): The number of search results to return.
Defaults to TOP_SEARCH_RESUTLS.
is_exact_terms (bool, optional): use an exact phrase search or not.
Defaults to False.
Returns:
dict: JSON response from the Google Custom Search API,
None if an error occurs.
"""
params = {
"key": GOOGLE_API_KEY,
"cx": SEARCH_ENGINE_ID,
"num": num_results,
}
if is_exact_terms:
params["exactTerms"] = query
else:
params["q"] = query.replace('"', "")
response = requests.get(GOOGLE_ENDPOINT_URL, params=params)
if response.status_code == 200:
return response.json()
else:
print(f"Error: {response.status_code}, {response.text}")
return None
def get_most_frequent_words(
input_text: str,
number_word: int = NUM_FREQUENT_WORDS,
) -> str:
"""
Extracts the most frequent words from the input text
and forms a search phrase.
Args:
input_text (str): The text from which to extract frequent words.
number_word (int, optional): The number of frequent words to extract.
Returns:
str: A search phrase consisting of the most frequent words.
"""
# Check if the input text is valid
if not isinstance(input_text, str) or not input_text:
return None
# Tokenize the input text into words and convert to lowercase
words = word_tokenize(input_text.lower())
# Get the set of stop words for the specified language
stop_words = set(stopwords.words(STOPWORDS_LANG))
# Get the set of punctuation characters
punctuation = set(string.punctuation)
# Filter out stop words, punctuation, and non-alphanumeric words
filtered_words = [
word
for word in words
if word.isalnum()
and word not in stop_words
and word not in punctuation
]
# Count the frequency of each filtered word
word_frequencies = Counter(filtered_words)
# Get the most common words and their frequencies
top_words = word_frequencies.most_common(number_word)
for top_word in top_words:
words.append(top_word[0])
# Construct the search phrase
if len(words) > NUM_FREQUENT_WORDS:
search_phrase = " ".join(words[:NUM_FREQUENT_WORDS])
else:
search_phrase = " ".join(words[:number_word])
return search_phrase
def get_chunk(
input_text: str,
chunk_size: int = CHUNK_SIZE,
num_chunk: int = NUM_CHUNKS,
) -> list[str]:
"""
Splits the input text into chunks of a specified size.
Args:
input_text (str): The text to be chunked.
chunk_size (int, optional): The number of words per chunk.
num_chunk (int, optional): The number of chunks to generate.
Returns:
list: A list of chunks of the input text.
"""
if not isinstance(input_text, str):
return []
chunks = []
input_words = input_text.split() # Split by any whitespace
for i in range(num_chunk):
# Calculate the start and end indices for the current chunk
start_index = i * chunk_size
end_index = (i + 1) * chunk_size
# Extract the words for the current chunk and join them into a string
chunk = " ".join(input_words[start_index:end_index])
if chunk: # Only append non-empty chunks
chunks.append(chunk)
return chunks
def get_keywords(text: str, num_keywords: int = NUM_KEYWORDS) -> list[str]:
"""
Extracts the top keywords from a given text using the TF-IDF method.
Args:
text (str): The input text from which to extract keywords.
num_keywords (int, optional): The number of top keywords to return.
Returns:
list: A list of strings representing the top keywords extracted
from the text.
"""
# Create a TF-IDF Vectorizer
vectorizer = TfidfVectorizer(stop_words=STOPWORDS_LANG)
# Fit and transform the text
tfidf_matrix = vectorizer.fit_transform([text])
# Get feature names (words)
feature_names = vectorizer.get_feature_names_out()
# Get TF-IDF scores
tfidf_scores = tfidf_matrix.toarray()[0]
# Sort words by TF-IDF score
word_scores = list(zip(feature_names, tfidf_scores))
word_scores.sort(key=lambda x: x[1], reverse=True)
# Return top keywords
return [word for word, score in word_scores[:num_keywords]]
def generate_search_phrases(input_text: str) -> list[str]:
"""
Generates different types of phrases for search purposes.
Args:
input_text: The input text.
Returns:
A list containing:
- A list of most frequent words.
- The original input text.
- A list of text chunks.
- A text without entities.
"""
if not isinstance(input_text, str):
return []
search_phrases = []
# Method 1: Get most frequent words
search_phrases.append(get_most_frequent_words(input_text))
# Method 2: Get the whole text
search_phrases.append(input_text)
# Method 3: Split text by chunks
search_phrases.extend(get_chunk(input_text)) # TODO: for demo purposes
# Method 4: Remove identities and key words
entities = extract_entities(input_text)
text_without_entities = remove_identities_from_text(input_text, entities)
search_phrases.append(text_without_entities)
# keywords = get_keywords(input_text, 16)
# search_phrase = " ".join(entities) + " " + " ".join(keywords)
# search_phrases.append(search_phrase) # TODO: for demo purposes
return search_phrases
def remove_identities_from_text(input_text: str, entities: list[str]) -> str:
"""
Removes entities from the input text.
Args:
input_text: The input text as a string.
entities: A list of entities to be removed.
"""
for entity in entities:
input_text = input_text.replace(entity, "")
return input_text
|